使用梯度方差估计示例难度 该资源库包含源代码,需要重现一些主要成果: 如果您使用此软件,请考虑引用以下内容: @article{agarwal2020estimating, title={Estimating Example Difficulty using Variance of Gradients}, author={Agarwal, Chirag and Hooker, Sara}, journal={arXiv preprint arXiv:2008.11600}, year={2020} } 1.设定 安装软件 该存储库是使用TensorFlow和PyTorch的组合构建的。 您可以通过pip安装需求文本文件pip install -r ./requirements_tf.txt和pip install -r ./requirements_pytorch.txt来安装必要的
1
反事实解释作为解释机器学习模型决策的一种方式,在技术、法律和商业界越来越受到重视。 这些解释与美国信用法要求的长期确立的“主要理由”解释具有共同特征:它们都通过突出一组被认为最相关的特征来解释决策——并隐瞒其他特征。这些“突出特征的解释”有几个可取的属性:它们对模型的复杂性没有限制,不需要模型披露,详细说明实现不同决策所需的不同之处,并且似乎自动遵守法律。 但它们远比表面看起来复杂和主观。在本文中,我们证明了特征突出解释的效用依赖于一些容易被忽视的假设:特征值的推荐变化清楚地映射到现实世界的动作,可以通过仅查看训练数据的分布来使特征相称,特征仅与手头的决策相关,并且底层模型随着时间的推移是稳定的,单调的,并且仅限于二元结果。然后我们探索几个承认并试图解决这些假设的后果,包括特征突出解释旨在尊重自主性的方式的悖论,特征突出解释赋予决策者不受限制的权力,以及使这些解释有用与需要之间的紧张关系保持模型隐藏。虽然新的研究提出了几种方法来突出特征的解释可以解决一些问题我们发现的问题、模型中的特征与现实世界中的动作之间的脱节——以及补偿这一点所需的主观选择——必须在这些技术得到有效实施之前得到理解。
2022-06-01 22:10:50 279KB interpretability counterfactual explanation
1
SHAP(SHapley Additive exPlanations)是一种游戏理论方法,用于解释任何机器学习模型的输出。 它使用博弈论中的经典Shapley值及其相关扩展将最佳信用分配与本地解释联系起来(详细信息和引文,请参见)。 安装 Shap可以从或 安装: pip install shap or conda install -c conda-forge shap TreeExplainer的树集成示例(XGBoost / LightGBM / CatBoost / scikit-learn / pyspark模型) 尽管SHAP可以解释任何机器学习模型的输出,但我们已经为树集成方法开发了一种高速精确算法(请参见)。 XGBoost , LightGBM , CatBoost , scikit-learn和pyspark树模型支持快速的C ++实现: import xgboost import shap # load JS visualization code to notebook shap . initjs () # train XGBoost model X , y
1
Grad-CAM.pytorch ​ pytorch 实现 和 3.1 3.3 5.1 5.2 5.3 5.4 6.1 6.2 6.3 6.4 7.1 7.2 7.3 7.4 Grad-CAM整体架构 Grad-CAM++与Grad-CAM的异同 依赖 python 3.6.x pytoch 1.0.1+ torchvision 0.2.2 opencv-python matplotlib scikit-image numpy 使用方法 python main.py --image-path examples/pic1.jpg \ --network densenet121 \ --weight-path /opt/pretrained_model/densenet121-a639ec97.p
1