神经网络实现分类matlab代码人工神经网络的 LRP 工具箱 (1.3.0) 逐层相关性传播 (LRP) 算法通过使用学习模型本身的拓扑将相关性分数归因于输入的重要组成部分来解释特定于给定数据点的分类器的预测。 LRP 工具箱为支持 Matlab 和 python 的人工神经网络提供了简单且可访问的 LRP 独立实现。 工具箱实现了 Caffe 深度学习框架的 LRP 功能,作为 10/2015 发布的 Caffe 源代码的扩展。 Matlab 和 python 的实现旨在作为沙箱或游乐场,让用户熟悉 LRP 算法,因此在实现时考虑了可读性和透明度。 可以使用原始文本格式、Matlab 的 .mat 文件和 python/numpy 的 .npy 格式导入和导出模型和数据。 查看 LRP 工具箱的实际应用 要在浏览器中试用基于 python 的 MNIST 演示或基于 Caffe 的 ImageNet 演示,请单击相应的面板: MNIST 图片 文本 基于神经网络的简单 LRP 演示,可预测手写数字并使用 MNIST 数据集进行训练。 基于使用 Caffe 实现的神经网络的更复杂的
2023-04-18 14:42:01 1.8GB 系统开源
1
本应用为“车牌检测与识别”,检测模型基于卷积神经网络训练,训练平台为yolov5s,车牌检测训练样本数据集大概有5000张,车牌识别训练样本数据集大概有2000张。本应用包括以下三部分:训练数据集(已经标注,可采用yolov5进行训练)、车牌检测模型文件和车牌字符识别模型文件(包括pt格式和onnx格式)、基于java swing构建的demo程序(基于此,可以扩展成WEB应用、微服务等)。
2023-04-18 10:03:13 318.23MB 目标检测 车牌检测 车牌识别 yolov5
1
具有递归神经网络的文本生成 使用基于特征的RNN进行文本生成。 我们使用安德烈·卡帕蒂(Andrej Karpathy)的莎士比亚作品集。 给定来自此数据的字符序列(“莎士比亚”),训练模型以预测序列中的下一个字符。 通过重复调用模型,可以生成更长的文本序列。 模型的输出 以下是本教程中的模型训练了30个纪元并以字符串“ Q”开头时的示例输出: 奎妮:我以为你有罗马人。 Oracle这样,使所有人都反对这个词,因为他的照顾太弱了。 您的孩子们在您的圣洁的爱中,通过流血的宝座沉淀。 伊丽莎白·比什普(Bishop of Ely):我的主,嫁给并愿意哭泣,这是最漂亮的。 然而,现在我被世界可悲的一天收为继承人,要和他父亲一起面对面观看新路吗? 埃斯卡洛斯:为什么我们都下了更多儿子的原因。 卷:不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,这是没
2023-04-17 22:59:21 70KB Python
1
本程序针对多输入多输出的耦合网络,设计了PID神经元网络,达到了很好的控制效果。
基于深度学习的围棋AI演示程序,经过80,000盘专业棋谱数据集训练,含有约50MB经过训练的神经网络数据。 压缩包中还包含了相关的论文Training Deep Convolutional Neural Networks to Play Go。 操作说明:使用浏览器打开Play Go Against a DCNN.html,等待神经网络加载完成,即可运行。勾选Show Analysis,以便可视化地展示神经网络对下一步落子的预测。 语言:JavaScript(基于ConvNetJS库),可离线运行。 转载自https://chrisc36.github.io/deep-go/ 转载日期20170125
2023-04-16 19:02:42 2.23MB 深度学习 神经网络 围棋 AI
1
本文档实现了对ECG信号的处理,通过小波变去噪与检测,以及特征提取,并进行神经网络的训练,对不同身份的人的ECG进行识别。代码可以立即运行。注释很详细。希望能够帮到大家。
2023-04-16 16:05:38 15KB ECG QRS检测 神经网络 小波
1
基于Python卷积神经网络的动物识别系统源码,动物检测系统源码,宠物识别系统源码
研究@ Magic Leap(CVPR 2020,口腔) SuperGlue推理和评估演示脚本 介绍 SuperGlue是在Magic Leap完成的2020 CVPR研究项目。 SuperGlue网络是一个图形神经网络,结合了最佳匹配层,该层经过训练可以对两组稀疏图像特征进行匹配。 此存储库包含PyTorch代码和预训练权重,用于在关键点和描述符之上运行SuperGlue匹配网络。 给定一对图像,您可以使用此存储库在整个图像对中提取匹配特征。 SuperGlue充当“中端”,在单个端到端体系结构中执行上下文聚合,匹配和过滤。 有关更多详细信息,请参见: 全文:PDF: 。 作者: Pa
1
为了有效地实现心电信号压缩,以便心电数据的传输和存储,提出了一种基于卷积自编码器的心电压缩方法。通过卷积神经网络对心电图特征提取易实现降维,在卷积自编码器的编码过程中来实现心电压缩,将编码层作为压缩结果。卷积神经网络处理多通道的输入,因此可以实现导联体系的心电压缩。结果采用均方根百分误差和压缩比作为评判标准,单导联心电图压缩比为16,十二导联心电图压缩比为24,均方根损失误差在3%左右,从而验证了卷积自编码器的有效性。
1
神经网络LSTM 时间预测MATLAB源码,RNN全称循环神经网络(Recurrent Neural Networks),是用来处理序列数据的。在传统的神经网络模型中,从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多关于时间序列的问题却无能无力。
2023-04-14 10:23:45 13KB 神经网络 MATLAB源码 LSTM时间预测 RNN