基于等效油耗极小值算法(ECMS)的串联混合动力汽车能量管理策略程序设计与优化:Simulink模型下的油电转化因子二分法应用,基于等效油耗极小值算法(ECMS)的串联型混合动力汽车能量管理策略程序 1.基于simulink模型搭建。 2.包含控制策略模块,驾驶员模块,电机模块,发动机-发电机组模块。 3.采用二分法获得工况对应的最优油电转化因子。 ,基于等效油耗极小值算法(ECMS)的串联型混合动力车能量管理策略程序; Simulink模型搭建; 控制策略模块; 驾驶员模块; 电机模块; 发动机-发电机组模块; 二分法获得最优油电转化因子。,基于ECMS的混合动力汽车能量管理策略程序:Simulink模型下的多模块协同优化
2025-04-11 23:56:59 32KB
1
直流有刷电机是大家最早接触的一类电机,中学时物理课堂上介绍电动机也是以它为模型来展示的。直流有刷电机的主要结构就是定子+转子+电刷,通过旋转磁场获得转动力矩,从而输出动能。电刷与换向器不断接触摩擦,在转动中起到导电和换相作用。根据上面的描述可以得出结论,电机的电刷只要通上额定的直流电压就可以使电机旋转,反向接通而定的直流电压就可以使电机反向旋转。看上去确实很简单,那么问题来了,直接接通直流电源,如果电源的电压够大的话,电机肯定按最大的转速运动,但是这样会大大减少电刷的使用寿命,况且我们在实际使用的时候也不需要电机按最大转速运行,那么就需要对电机进行调速了。那么就可以通过PWM来控制全控型电力电子元件的开通与关断,根据面积等效原理,通过增大或者减小PWM的脉冲宽度来控制电力电子元件的开通时间长短,从而实现电机供电电压的大小变化,来控制电机的转速增减,此过程称为变压调速。有刷直流电机的控制相对简单,只需要一个“H桥”即可,所以设置的时候,只需设置控制V1V3和V6V4的PWM信号,V2V5常闭即可,在电机接线的时候,只需将AB两相接到电机上即可。
2025-04-03 08:54:56 28KB simulink matlab
1
基于MPC的轨迹跟踪控制联合仿真:Simulink与Carsim参数设置详解及效果展示,基于MPC的模型预测轨迹跟踪控制联合仿真simulink模型+carsim参数设置 效果如图 可选模型说明文件和操作说明 ,基于MPC的模型预测; 轨迹跟踪控制; 联合仿真; simulink模型; carsim参数设置; 效果图; 可选模型说明文件; 操作说明,基于MPC的轨迹跟踪控制:Simulink+Carsim联合仿真效果图解析及模型操作指南 在深入探讨基于模型预测控制(Model Predictive Control, MPC)的轨迹跟踪控制联合仿真技术时,我们有必要详细解析Simulink与Carsim这两种仿真软件在参数设置上的细节及其联合仿真效果。Simulink是一个广泛应用于多领域动态系统建模和仿真的软件,其强大的模块化设计能力和丰富的工具箱为复杂系统的分析和设计提供了便利。而Carsim则是专门针对汽车动力学性能仿真的一款软件,可以模拟车辆在各种工况下的动态响应和行为。 本文将详细探讨如何在Simulink与Carsim中进行参数设置,以便实现高效的轨迹跟踪控制联合仿真。我们需要理解MPC的基本原理。MPC是一种先进的控制策略,它通过在每个控制周期内优化未来一段时间内的控制输入,来满足性能指标并保证系统的约束得到满足。MPC在轨迹跟踪中的应用,尤其是在非线性和约束条件较为复杂的车辆控制系统中,展现出了显著的优势。 在Simulink中,MPC控制器的参数设置主要包括模型预测范围、控制范围、控制变量和状态变量的定义,以及预测模型的建立等。此外,控制器的优化算法选择、目标函数和约束条件的设定也是确保轨迹跟踪性能的关键。在Carsim中,我们需要设置车辆的物理参数、环境参数、路面条件等,以确保仿真的真实性和准确性。在两者的联合仿真中,需要确保Simulink中的MPC控制器能够接收Carsim提供的实时车辆状态数据,并进行正确的控制决策输出。 文档中提到的模型说明文件和操作说明可能包括了对仿真模型的详细介绍,以及如何在Simulink和Carsim中进行操作的具体步骤。这些文件对初学者来说尤为宝贵,因为它们可以减少学习曲线,加快仿真模型的搭建速度。联合仿真效果如图所示,意味着通过恰当的参数设置,仿真模型能够在Carsim中实现预定的轨迹跟踪任务,并且可以通过Simulink直观地展示出仿真结果。 联合仿真不仅能够验证MPC算法在车辆轨迹跟踪控制中的有效性,还能够提供一个直观的平台来分析和调整控制策略,以满足不同工况下的性能要求。同时,联合仿真的结果也可以用来指导实际的车辆控制系统的设计和优化,为智能交通系统的开发提供理论基础和实践参考。 在当前智能交通和自动驾驶技术的快速发展背景下,基于MPC的轨迹跟踪控制联合仿真技术显得尤为重要。它不仅有助于解决传统控制策略难以应对的复杂工况问题,还能在保证安全的前提下提高车辆的行驶性能和舒适性。未来,随着算法的不断完善和计算能力的提升,MPC在轨迹跟踪控制领域的应用将更加广泛,并将进一步推动智能交通技术的进步。
2025-03-28 20:02:15 94KB 数据仓库
1
同步整流buck变换器simulink模型,双闭环控制,PWM控制,效果很好。
2024-10-10 19:22:40 39KB matlab/simulink
1
   要用模型预测控制(MPC)做算法的对比实验,发现写纯.m文件有点麻烦,毕竟我不深入原理,于是用MATLAB/SIMULINK自带的MPC controller模块,真是太节省时间了。MPC需4个模块:被控对象的数学模型、预测模型、优化算法以及矫正反馈。使用自带的MPC control模块的话,只需要知道被控对象的数学模型就行了。下面用一个实例进行演示。 matlab程序(含simulink和.m程序),完整运行
2024-09-24 14:35:37 17KB matlab MPC simulink 模型预测
1
在能源领域,混合储能系统因其灵活性和高效性而备受关注,尤其在可再生能源的应用中扮演着重要角色。本文将深入探讨“超级电容、蓄电池混合储能仿真simulink模型”的核心概念及其应用。 我们要了解超级电容(Supercapacitor)和蓄电池(Battery)这两种储能装置的特点。超级电容具有高功率密度、快速充放电能力和长寿命,但其能量密度相对较低。而蓄电池则具有较高的能量密度,能存储大量能量,但充电和放电速度相对较慢,且寿命有限。混合储能系统将两者结合,充分利用各自优势,以实现更好的能量管理和系统性能。 在Simulink环境中,混合储能系统的建模和仿真是一项关键任务。Simulink是MATLAB的一个扩展工具箱,用于创建动态系统的可视化模型,并进行仿真分析。通过使用Simulink,我们可以构建一个详细、精确的模型来模拟真实世界的行为,这在电力系统、控制系统和能源管理等方面有着广泛的应用。 在给定的文件"parallel_battery_SC_boost_converter.slx"中,我们可以推测这是一个并联电池和超级电容的混合储能系统,结合了Boost转换器的模型。Boost转换器是一种升压转换器,它能将输入电压提升到更高的电压水平,这对于储能系统的能量转换至关重要。 该模型可能包括以下几个部分: 1. **超级电容模型**:模拟超级电容的电荷存储和释放过程,通常会考虑内阻、电容值等因素。 2. **蓄电池模型**:反映蓄电池的电压特性、容量和充电/放电过程,可能会包含荷电状态(SOC)跟踪算法。 3. **并联结构**:超级电容和蓄电池通过并联连接,共同提供或吸收能量,以满足负载需求。 4. **Boost转换器模型**:负责调节电压,确保储能设备与系统其他部分之间的电压匹配。 5. **控制器**:用于决策何时从超级电容还是蓄电池获取能量,以及如何调整Boost转换器的工作状态,以优化系统性能。 在实际仿真过程中,可以设定不同的运行条件,如负载变化、电网波动等,观察混合储能系统如何动态响应这些变化。通过仿真结果,我们可以评估系统的效率、稳定性、响应时间和能量损失,从而对系统设计进行优化。 超级电容和蓄电池混合储能系统的Simulink模型是研究和设计储能系统的重要工具,它能够帮助工程师理解和改进储能技术,促进清洁能源的广泛应用。通过对"parallel_battery_SC_boost_converter.slx"模型的深入分析和调试,我们可以获得宝贵的洞察,为实际的储能系统设计提供理论支持。
2024-08-07 11:23:50 36KB 混合储能 超级电容
1
模型保存的版本为matlab2020a
2024-07-27 10:32:00 36KB matlab simulink 电力电子
1
质子交换膜燃料电池(PEMFC)是一种先进的电化学能源转换设备,广泛应用于电动汽车、便携式电源系统以及分布式发电领域。在Simulink环境中构建PEMFC模型可以帮助我们理解和优化这种燃料电池的工作性能。本模型包含两个独立部分:静态模型和动态模型。 静态模型主要关注在稳态条件下的燃料电池性能,它不考虑时间变化因素,适用于初步分析和设计。通过这个模型,我们可以计算出在一定操作条件下电池的输出电压。输出电压是PEMFC的关键参数之一,它直接影响到系统的整体效率。此外,静态模型还可以评估燃料电池的输出功率,这决定了其在实际应用中的可用能量。 动态模型则更深入地模拟了PEMFC内部的物理和化学过程,考虑了如反应速率、质子传导、气体扩散等因素随时间的变化。动态模型能够计算出效率、产热量、产水量以及氢氧消耗速率等动态参数。这些参数对于理解燃料电池在不同工况下的运行状态至关重要,例如在冷启动、加速或负载变化时的响应。 效率是评价燃料电池性能的重要指标,它表示实际输出功率与理论最大功率之比。产热量反映了燃料电池工作过程中的能量损失,而产水量则揭示了水管理问题,因为水分平衡对于维持质子交换膜的湿润状态和保持良好的电导率非常关键。氢氧消耗速率则可以用来评估燃料电池的燃料利用率和可持续性。 模型附带的参考公式和文献资料为深入学习和验证模型的准确性提供了基础。参考公式可能涵盖了电极反应动力学、电解质传导、气体扩散等基本过程,而参考文献则可能包含了最新的研究进展和技术细节,有助于读者进一步了解PEMFC的工作原理和技术挑战。 在进行毕业设计时,使用这样的Simulink模型能帮助学生全面掌握PEMFC的工作机制,并通过调整模型参数来探索优化策略。例如,可以通过改变温度、压力、气体纯度等操作条件,观察对性能参数的影响,从而提出改进措施。 这个质子交换膜燃料电池的Simulink模型是一个强大的工具,不仅提供了理论知识的学习,也支持了实际操作和仿真研究,对于理解燃料电池的工作机理、优化设计以及进行科研项目具有重要意义。通过深入学习和使用这个模型,无论是学生还是研究人员,都能在燃料电池技术领域获得宝贵的经验和洞见。
2024-07-21 10:39:41 174KB 毕业设计
1
采用PID控制器设计直流电机控制simulink模型
2024-07-07 16:12:21 35KB 直流电机控制
1