机器学习回归项目 使用的著名UCI数据集来预测葡萄酒质量。
1
线性回归 一个简单的线性回归机器学习程序,用Python 3.4编写 依存关系 numpy: ://www.numpy.org/ Docopt: : 如果按照“安装”下的说明进行操作,则不必手动安装。 安装 获取此存储库中的文件。 例如:git clone 在命令提示符下,导航到此存储库在计算机上的保存位置。 您应该看到文件setup.py。 安装 跑步 > python setup.py install # do not use 'pip install .', this is just a script 您现在应该可以直接运行“ regress.py” 训练集和测试集 regress.py将使用训练集来学习一个权重矩阵,该矩阵将应用于测试集中每个条目的属性,以预测该条目的类别。 它将比较其预测与实际类别,并查看其预测是否正确。 处理完所有条目后,它将报告其总体准确性。
2022-02-09 04:22:19 13KB Python
1
Linear-regression
2021-12-25 20:51:12 35KB JupyterNotebook
1
EDA和ML项目 存储库包含各种项目,这些项目都使用R语言编写了以下代码: 探索性数据分析 机器学习模型(线性回归,逻辑回归,k均值聚类,分层聚类,SVM,决策树,随机森林,时间序列分析,XGBoost) 以下是一些常用的程序包/库的列表,这些程序包/库被用作数据分析和构建机器学习模型的一部分 数据处理: dplyr,plyr,tidyr,stringer,data.table,lubridate(用于日期处理), 数据可视化: ggplot2,cowplot,ggthemes,比例 ML模型: randomForest,caret(用于数据拆分,交叉验证,预处理,特征选择,变量重要性估计等) 推荐模型: re荐 文本挖掘: tm,tidyverse
2021-12-17 12:54:13 26.84MB r random-forest clustering linear-regression
1
梅蒂斯-路德 电影票房数据的网络抓取和线性回归(第 2-3 周) -
1
飞机延迟 使用机器学习模型预测航班延误 在这个存储库中,我开发了一个模型,旨在预测起飞时的航班延误。 从技术角度来看,贯穿整个 notebook 的 Python 的主要方面是: visualization: matplolib, seaborn, basemap data manipulation: pandas, numpy modeling: sklearn, scipy class definition: regression, figures 打扫 1.1日期和时间 1.2 填充因子 比较航空公司 2.1 航空公司基本统计说明 2.2 延误分布:建立航空公司排名 延误:起飞或降落 始发机场与延误的关系 4.1 航空公司覆盖的地理区域 4.2 始发机场如何影响延误 4.3通常延误的航班 延误的时间可变性 预测航班延误 6.1 模式一:一航一机场 6.1.1 Pitfalls
1
源码和数据集
2021-11-09 17:13:00 6.77MB 回归 数据分析
1
Nonlinear least square fiitings
2021-10-25 14:05:34 2.95MB least squares
1
回归-PM2.5预测(李宏毅)
2021-10-21 21:52:48 174KB 数据集
1
遗传线性回归:通过遗传算法进行线性回归拟合的近似
1