热电偶(thermocouple)是温度测量仪表中常用的测温元件,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。各种热电偶的外形常因需要而极不相同,但是它们的基本结构却大致相同,通常由热电极、绝缘套保护管和接线盒等主要部分组成,通常和显示仪表、记录仪表及电子调节器配套使用
2022-03-25 16:18:54 93KB 热电偶
1
电路功能与优势 本电路在精密热电偶温度监控应用中使用 ADuCM360精密模拟微控制器,并相应地控制4 mA至20 mA的输出电流。 ADuCM360 集成双通道24位∑-△型模数转换器(ADC)、双通 道可编程电流源、12位数模转换器(DAC)、1.2 V内置基准电压源以及ARM Cortex-M3内核、126 KB闪存、8 KB SRAM和各种数字外设,例如UART、定时器、SPI和I2C接口。 在该电路中, ADuCM360连接到一个T型热电偶和一个100铂电阻温度检测器(RTD)。RTD用于冷结补偿。低功耗Cortex-M3内核将ADC读数转换为实际温度值。支持的T型温度范围是−200°C至+350°C,而此温度范围所对应的输出电流范围是4 mA至20 mA。 该电路为热电偶测量提供了完整的解决方案,所需外部元件极少,并且可针对高达28 V的环路电压采用环路供电。 电路描述 本应用中用到ADuCM360的下列特性: 12位DAC输出及其灵活的片内输出缓冲器用于控制外部NPN晶体管BC548。通过控制此晶体管的VBE电压,可将经过47Ω负载电阻的电流设置为所需的值。 DAC为12位单调式,但其输出精度通常在3 LSB左右。此外,双极性晶体管引入了线性误差。为提高DAC输出的精度并消除失调和增益端点误差,ADC0会测量反馈电压,从而反映负载电阻(RLOAD)两端的电压。根据此ADC0读数,DAC输出将通过源代码纠正。这样就针对4 mA至20 mA的输出提供了±0.5°C的精度。 24位Σ-Δ 型ADC内置PGA,在软件中为热电偶和RTD设置32的增益。ADC1在热电偶与RTD电压采样之间连续切换。 可编程激励电流源驱动受控电流流过RTD。双通道电流源可在0μA至2 mA范围内以一定的阶跃进行配置。本例使用200μA设置,以便将RTD自热效应引起的误差降至 最小。 ADuCM360中的ADC内置了1.2 V基准电压源。内部基准 电压源精度高,适合测量热电偶电压。 ADuCM360中ADC的外部基准电压源。测量RTD电阻 时,我们采用比率式设置,将一个外部基准电阻(RREF)连接在外部VREF+和VREF−引脚上。由于该电路中的基准电压源为高阻抗,因此需要使能片内基准电压输入缓冲器。片内基准电压缓冲器意味着无需外部缓冲器即可将输入泄漏影响降至最低。 偏置电压发生器(VBIAS)。VBIAS功能用于将热电偶共 模电压设置为AVDD/2 (900 mV)。同样,这样便无需外部电阻,便可以设置热电偶共模电压。 ARM Cortex-M3内核。功能强大的32位ARM内核集成了126 KB闪存和8 KBSRAM存储器,用来运行用户代码,可配置和控制ADC,并利用ADC将热电偶和RTD输入转 换为最终的温度值。它还可以利用来自AIN9电压电平 的闭环反馈控制并持续监控DAC输出。出于额外调试目 的,它还可以控制UART/USB接口上的通信。 UART用作与PC主机的通信接口。这用于对片内闪存进 行编程。它还可作为调试端口,用于校准DAC和ADC。 两个外部开关用来强制该器件进入闪存引导模式。使 SD处于低电平,同时切换RESET按钮, ADuCM360将进 入引导模式,而不是正常的用户模式。在引导模式下, 通过UART接口可以对内部闪存重新编程。 J1连接器是一个8引脚双列直插式连接器,与CN0300支 持硬件随附的USB-SWD/UART板相连。配合J-Link-Lite 板可对此应用电路板进行编程和调试。参见图3。 热电偶和RTD产生的信号均非常小,因此需要使用可编程增益放大器(PGA)来放大这些信号。 本应用使用的热电偶为T型(铜-康铜),其温度范围为−200°C至+350°C,灵敏度约为40ΩV/°C,这意味着ADC在双极性模式和32倍PGA增益设置下可以覆盖热电偶的整个温度范围。 RTD用于冷结补偿。本电路使用的RTD为100Ω铂RTD,型号为Enercorp PCS 1.1503.1。它采用0805表贴封装,温度变化率为0.385 Ω/°C。 注意,基准电阻RREF必须为精密5.6 kΩ (±0.1%)电阻。 本电路必须构建在具有较大面积接地层的多层电路板(PCB)上。为实现最佳性能,必须采用适当的布局、接地和去耦技术(请参考 指南MT-031——“实现数据转换器的接 地并解开AGND和DGND的谜团”、指南MT-101——“去耦 技术”以及 ADuCM360TCZ评估板布局)。 附件内容包括: 电路设计原理图和PCB的PDF档; gerber文件和材料清单; 电路笔记CN-0300;
1
K型热电偶查表把毫伏转换为温度,温度范围-100~1370度。C#
2022-01-20 08:49:56 70KB K型热电偶 温度转换 C#
1
两列竖排数据,适合建立表格等分析
2022-01-09 11:02:21 39KB 热电偶 表格
1
本文为大家带来的是一款14位4-20mA 环路供电型热电偶温度测量系统电路设计图,该电路是一完整的环路供电型热电偶温度测量系统,使用精密模拟微控制器的PWM 功能控制4 mA 至20 mA 输出电流。具有更高分辨率的 PWM 驱动4mA 至 20mA 环路的优势,支持温度范围为−200° C 至+350° C 的 T 型热电偶。
2021-12-13 16:53:35 86KB 智能硬件 LTE测试 MCU 电路设计
1
温度在航天、工业、装备研发过程中是十分重要的一项参数,是影响设备正常工作的一项关键因素。为了解决K型热电偶易受冷端温度不稳定、空间电磁环境干扰、温度与热电势的非线性等因素导致的测量温度不准确问题,对热电偶温度采集装置进行了优化设计。通过使用一种冷端补偿仪表放大器,来消除冷端温度不稳定对测量造成的影响;以 C8051F352单片机作为主控芯片温度模拟信号,将模拟信号通过内置 ADC转换成数字信号发送至上位机进行非线性校正。测量结果表明,经过优化后的温度采集装置在-30~1 300 ℃范围内测量误差小于0.5 ℃,这种优化设计极大地提高了热电偶温度采集的精度。
1
基于STM32F103方案的PID+PWM+OLED+K型热电偶温度控制仪 STM32F103 MAX6675 24C32
2021-11-12 08:39:20 1.07MB diy制作 温度控制器 STM32F103 电路方案
1
K型热电偶 ITS90计算方法
2021-11-10 22:46:00 1KB K型偶 ITS90
1
这是一篇关于MAX6675的K型热电偶测温实验,见附件下载其源码和使用教程。热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题: 1、热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数; 2、热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关; 3、当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这时候的热电偶热电势仅是工作端温度的单值函数。 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流。 根据热电偶测温原理,热电偶的输出热电势不仅与测量端的温度有关,而且与冷端的温度有关,需要测量出冷端温度,从而才能准确地测量出真实的温度 可能感兴趣的项目设计:MAX6675+K型热电偶测温实验,链接:https://www.cirmall.com/circuit/2537/detail?3 该设计通过SPI接口和USART将测得的温度数据发送到PC的串口助手,本文中使用到了以下模块: a)网购的一款MAX6675模块,包含K型热电偶。 b)STM32 Nucleo F302R8开发板。 热电偶工作原理 两种不同成份的导体两端接合成回路,当两个接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。 热电偶就是利用热点效应原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。 MAX6675工作原理 MAX6675是MAXIM公司的K型热电偶串行模数转换器,它能独立完成信号放大、冷端补偿、线性化、A/D转换及SPI串口数字化输出功能。 MAX6675内部集成有冷端补偿电路;带有简单的3位串行SPI接口;可将温度信号转换成12位数字量,温度分辨率达0.25℃;内含热电偶断线检测电路。冷端补偿的温度范围-20℃~80℃,可以测量0℃~1023.75℃的温度。MAX6675为SO-8脚封装,工作电压为+5V直流电压,功耗为47.1mW,电流为50mA,适用于体积不大,不利散热的装置条件下使用,其引脚图如图2所示。其中SO为SPI串行输出端口引脚; CS为片选信号;SCK为串行时钟输入;T+、T-分别接热电偶的测量端和冷端。
1
功能实现:可以设置上下限温度值,温度异常会发出警报声。
2021-09-09 13:04:23 7.34MB 51单片机 MAX6675K
1