《动手学习Scikit-Learn与TensorFlow》是Aurélien Géron所著的一本关于机器学习的入门书籍,第三版更新中涵盖了从基础到深度学习的各个层面。本书不仅适合于初学者,还提供了深入的实践技巧,帮助读者构建能够从数据中学习的智能系统。 机器学习的概念、工具和技术,是本书的三大主题。通过使用Scikit-Learn、Keras和TensorFlow这三个生产就绪的Python框架,作者让读者能够直观地理解构建智能系统的相关概念和工具。书中几乎不涉及复杂的理论,而是通过具体的实例和代码演示,让读者在实践中学习。 本书内容从简单的线性回归开始,逐步深入到复杂的深度神经网络。每章都配有代码示例和练习,帮助读者巩固所学知识,并将理论应用到实践中。编程经验是学习本书的唯一前提,不需要读者对机器学习有深入的背景知识。 具体来说,本书涵盖了以下几个方面: 1. 使用Scikit-Learn跟踪一个完整的机器学习项目,从而有一个从头到尾的项目实施经验。 2. 探索多种模型,包括支持向量机、决策树、随机森林以及集成方法。 3. 利用无监督学习技术,如降维、聚类和异常检测。 4. 深入神经网络架构,包括卷积神经网络、循环神经网络、生成对抗网络、自编码器、扩散模型和变换器。 5. 利用TensorFlow和Keras构建和训练用于计算机视觉和自然语言处理的神经网络。 作者Aurélien Géron的这本书被誉为学习实用机器学习的绝佳资源。书中不仅提供了清晰、易懂的解释,还有丰富的实践技巧,帮助读者建立对机器学习理论和实践问题解决方法的直观理解。 通过这本书,读者将能够掌握使用Scikit-Learn和TensorFlow构建和训练各种机器学习和深度学习模型的技巧,从而有能力构建出智能系统。本书推荐给所有对学习实用机器学习技术感兴趣的读者。
2025-09-24 01:49:47 69.65MB 机器学习
1
The topic of this book is Reinforcement Learning—which is a subfield of Machine Learning—focusing on the general and challenging problem of learning optimal behavior in complex environment. The learning process is driven only by reward value and observations obtained from the environment. This model is very general and can be applied to many practical situations from playing games to optimizing complex manufacture processes. Due to flexibility and generality, the field of Reinforcement Learning is developing very quickly and attracts lots of attention both from researchers trying to improve existing or create new methods, as well as from practitioners interested in solving their problems in the most efficient way. This book was written as an attempt to fill the obvious lack of practical and structured information about Reinforcement Learning methods and approaches. On one hand, there are lots of research activity all around the world, new research papers are being published almost every day, and a large portion of Deep Learning conferences such as NIPS or ICLR is dedicated to RL methods. There are several large research groups focusing on RL methods application in Robotics, Medicine, multi-agent systems, and others. The information about the recent research is widely available, but is too specialized and abstract to be understandable without serious efforts. Even worse is the situation with the practical aspect of RL application, as it is not always obvious how to make a step from the abstract method described in the mathematical-heavy form in a research paper to a working implementation solving actual problem. This makes it hard for somebody interested in the field to get an intuitive understanding of methods and ideas behind papers and conference talks. There are some very good blog posts about various RL aspects illustrated with working examples,
2025-09-14 16:07:20 22.48MB 深度学习
1
深度强化学习上手实战,必备书籍。 The topic of this book is Reinforcement Learning—which is a subfield of Machine Learning—focusing on the general and challenging problem of learning optimal behavior in complex environment. The learning process is driven only by reward value and observations obtained from the environment. This model is very general and can be applied to many practical situations from playing games to optimizing complex manufacture processes.
2025-09-14 16:06:16 28.16MB 深度学习 强化学习
1
EPUB格式,包含配套代码。压缩包里还包括Fluent Python,PDF和EPUB格式;Python Master the Art of Design Patterns,PDF格式。 What you will learn Understand the basics of RL methods, algorithms, and elements Train an agent to walk using OpenAI Gym and Tensorflow Understand Markov decision process, Bellman's optimality, and temporal difference (TD) learning Solve multi-armed bandit problems using various algorithms Master deep learning algorithms, such as RNN, LSTM, and CNN with applications Build intelligent agents using the DRQN algorithm to play the Doom game Teach agents to play the Lunar Lander game using DDPG Train an agent to win a car racing game using dueling DQN
2025-09-14 15:48:46 129.58MB tensorflow python
1
《Hands-On Reinforcement Learning with Python》是一本深入实践的书籍,旨在帮助读者理解并掌握强化学习的基本概念和算法,同时通过Python编程实现这些算法。强化学习是机器学习的一个重要分支,它通过与环境的交互来学习最优策略,以最大化长期奖励。这本书适合有一定Python基础和机器学习知识的读者,它将理论与实践相结合,使得学习过程更为直观和生动。 本书首先会介绍强化学习的基础知识,包括马尔科夫决策过程(Markov Decision Process, MDP)、动态规划(Dynamic Programming)、Q学习、SARSA等基础算法。MDP是强化学习的核心模型,它描述了一个状态转移过程,其中未来的状态只依赖于当前状态和采取的行动。动态规划是解决MDP的一种方法,包括价值迭代和策略迭代,它们提供了理论上最优的解决方案。 Q学习是无模型强化学习中最常见的算法之一,它通过更新Q表来近似最优策略。SARSA(State-Action-Reward-State-Action)则是一种在线学习算法,它在每次动作之后立即更新策略,使得学习过程更加实时。这两种算法都使用了Bellman方程,这是强化学习理论中的关键工具。 接着,书会涉及深度强化学习(Deep Reinforcement Learning, DQN)的内容,这是近年来强化学习领域的热点。DQN利用深度神经网络作为函数近似器,解决了传统Q学习中Q表维度过高无法扩展的问题。书中可能会涵盖Double DQN、 Dueling DQN 和 Prioritized Experience Replay 等改进策略,这些策略提高了DQN的稳定性和性能。 此外,还可能讲解到Policy Gradient 方法,如REINFORCE算法,以及Actor-Critic方法,这些方法直接优化策略函数而不是价值函数。在更复杂的环境中,如Atari游戏或机器人控制任务中,这些方法表现出色。 书中还会涵盖近似动态规划的方法,如TD学习(Temporal Difference Learning),以及蒙特卡洛方法,它们在实际应用中有着广泛的应用。可能会讨论到多智能体强化学习(Multi-Agent Reinforcement Learning)和连续动作空间的强化学习问题,这些都是强化学习在复杂系统和现实世界问题中的挑战。 通过阅读《Hands-On Reinforcement Learning with Python》,读者不仅能理解强化学习的基本原理,还能通过实际的Python代码加深理解,从而具备独立实现和应用强化学习算法的能力。这本书的实践性使得读者能够快速地将所学应用到实际项目中,提升自己的技能水平。
2025-09-14 15:43:05 14.69MB deep learnin
1
深度强化学习是一种结合了强化学习和深度学习的智能学习方法,它通过模拟人类的学习方式,使得智能体能够在不确定的环境中进行决策和学习,以实现最大化的累积奖励。在最新的《Deep Reinforcement Learning with Python, 2nd Edition》一书中,作者Sanghi Nimish深入探讨了深度强化学习的理论基础和实际应用,特别是在聊天机器人和大型语言模型中的应用。 该书的第二版专注于介绍强化学习中的人工智能(AI)训练技术,即所谓的强化学习的反馈(Reinforcement Learning from Human Feedback,简称RLHF)。这种技术能够通过人类的反馈来训练和改进AI系统,尤其在聊天机器人和大型语言模型的训练中发挥着重要作用。本书从基础的深度强化学习概念出发,逐步深入到复杂的人工智能训练领域。 书中不仅详细介绍了深度强化学习的基本概念和核心算法,例如Q学习、策略梯度方法、Actor-Critic方法等,还深入讲解了如何将这些算法应用于不同的问题和环境。Sanghi Nimish还讨论了深度强化学习在现代人工智能应用中的挑战和解决方案,比如如何处理高维观测空间和如何提高学习效率。 此外,作者还提供了大量编程实例和案例研究,帮助读者更好地理解和掌握深度强化学习的实现方法。对于希望深入研究深度强化学习,或者希望将其应用于聊天机器人和大型语言模型开发的读者来说,这本书是难得的学习资源。 由于文档中提到本书的版权内容,这表明了这本书是受到版权法保护的。对于本书中提到的商标名称、标志和图片,作者和出版社遵循了编辑式的使用方式,并尊重商标权所有者的利益,且没有侵犯商标的意图。同时,出版社也对本书内容的准确性、完整性不承担法律责任,并对可能出现的错误或遗漏不负责。 在书中,出版社还提到了书中的内容,包括翻译、翻印、插图再利用、朗诵、广播、微缩胶片复制或其他形式的复制,以及信息的传输或存储和检索、电子适应、计算机软件或任何现在已知或将来开发的方法的权利。此外,对于书中的商标名称、商标、服务标记和类似术语,出版社声明这不构成对专有权的主张。 出版社对本书中提供的建议和信息的准确性负责,但不承担任何法律义务。同时,出版社也声明,对于可能出现的错误或遗漏,出版社无法做出保证。出版社对于书中包含的材料也不承担任何明示或暗示的保证。 本书的编辑和出版涉及多位专业人士,例如Apress Media LLC的常务董事Welmoed Spahr,以及编辑Celestin Suresh John、发展编辑James Markham、编辑助理Gryffin Winkler和校对Kezia Ends等,他们共同保证了本书的专业性和高质量。 《Deep Reinforcement Learning with Python, 2nd Edition》是一本全面且实用的深度强化学习学习资源。它不仅提供了理论知识,还注重实践应用,尤其是在AI训练领域中的人类反馈强化学习的最新发展。
2025-09-14 15:41:10 17.32MB python
1
In this book, you will learn about the core concepts of RL including Q-learning, policy gradients, Monte Carlo processes, and several deep reinforcement learning algorithms. As you make your way through the book, you'll work on projects with datasets of various modalities including image, text, and video. You will gain experience in several domains, including gaming, image processing, and physical simulations. You'll explore technologies such as TensorFlow and OpenAI Gym to implement deep learning reinforcement learning algorithms that also predict stock prices, generate natural language, and even build other neural networks.
2025-09-14 15:39:52 21.4MB Reinforcemen Learning  Python  Deep 
1
Reinforcement learning is one of the most exciting and rapidly growing fields in machine learning. This is due to the many novel algorithms developed and incredible results published in recent years. In this book, you will learn about the core concepts of RL including Q-learning, policy gradients, Monte Carlo processes, and several deep reinforcement learning algorithms. As you make your way through the book, you'll work on projects with datasets of various modalities including image, text, and 《Python Reinforcement Learning Projects》这本书深入探讨了强化学习这一机器学习领域的热门话题。强化学习以其新颖的算法和近年来发表的显著成果而备受关注。通过本书,读者将掌握强化学习的核心概念,包括Q学习、策略梯度、蒙特卡洛过程以及深度强化学习算法。 在项目实践中,读者将运用TensorFlow这一强大的深度学习库处理各种模态的数据集,包括图像、文本等。这些项目旨在帮助读者将理论知识应用于实际问题,从而更好地理解并掌握强化学习的精髓。 Q学习是一种经典的强化学习算法,它允许智能体通过与环境的交互学习最优策略,以最大化长期奖励。书中会详细介绍如何构建Q表和更新Q值,以及如何利用ε-贪婪策略平衡探索与开发。 策略梯度是另一种重要的强化学习方法,它通过直接优化策略参数来改进策略。书中将解释如何利用梯度信息更新策略网络,以期望获得更高的奖励。 蒙特卡洛过程是强化学习的基础之一,它通过回溯过去的所有经历来估计策略的价值。书中将介绍第一遍和第零遍蒙特卡洛学习,以及它们在实际应用中的优缺点。 深度强化学习是强化学习与深度学习的结合,能够处理高维度状态空间。书中的项目可能涵盖DQN(深度Q网络)、A3C(异步优势演员评论家)和DDPG(深度确定性策略梯度)等算法,这些都是深度强化学习领域的里程碑式工作。 此外,书中还将涉及如何处理连续动作空间的问题,例如在DDPG中使用的确定性策略梯度方法,以及如何处理延迟奖励和非平稳环境等问题。 通过这些项目,读者不仅能够学习到强化学习的基本原理,还能掌握如何在实际问题中使用Python和TensorFlow实现这些算法。同时,书中可能还会涵盖如何收集和预处理数据,以及如何评估和调试强化学习模型。 《Python Reinforcement Learning Projects》是一本面向实践的强化学习指南,通过实例和项目,读者可以系统地提升自己在这一领域的技能,并为解决更复杂的人工智能问题打下坚实基础。无论你是机器学习爱好者,还是希望将强化学习技术应用于实际工作的专业人士,这本书都将提供宝贵的学习资源。
2025-09-14 15:35:39 15.67MB 强化学习 python reinforcement 人工智能
1
证据深度学习 “所有模型都是错误的,但是某些模型(知道何时可以信任它们)是有用的!” -乔治·博克斯(改编) 该存储库包含用于重现的代码(如所发布的),以及更通用的代码,以利用证据学习来训练神经网络,以直接从数据中学习不确定性! 设置 要使用此软件包,必须首先安装以下依赖项: python(> = 3.7) 张量流(> = 2.0) pytorch(支持即将推出) 现在,您可以安装以开始为模型添加证据层和损失! pip install evidential-deep-learning 现在,您可以直接在现有tf.keras模型管道( Sequential , Functional或model-subclassing )的一部分中直接使用此包: >>> import evidential_deep_learning as edl 例子 要使用证据深度学习,必须将模型的最后
2025-09-12 16:24:15 9.6MB deep-learning neural-network tensorflow pytorch
1
球形文字嵌入 在NeurIPS 2019中发布的用于Spherical Text Embedding的源代码。代码结构(尤其是文件读取和保存功能)改编自。 要求 GCC编译器(用于编译源c文件):请参阅有关的。 预训练的嵌入 我们在上提供了经过预训练的JoSE嵌入。 与诸如Word2Vec和GloVe之类的欧几里德嵌入不同,球形嵌入不一定受益于高维空间,因此,首先从低维嵌入开始可能是一个好主意。 运行代码 我们提供了一个shell脚本run.sh来编译源文件和训练嵌入。 注意:在准备训练文本语料库时,请确保文件中的每一行都是一个文档/段落。 超参数 注:建议使用默认的超参数,尤其是阴性样品(数量-negative )和损失函数保证金( -margin )。 调用不带参数的命令以获得超参数及其含义的列表: $ ./src/jose Parameters: -train
2025-09-11 16:32:18 10.76MB word-embeddings unsupervised-learning
1