【标题解析】 "2019本科毕业设计:基于UNet的遥感图像语义分割.zip" 这个标题揭示了本次设计的核心内容。它是一个本科毕业生在2019年完成的项目,主要研究的是利用UNet模型对遥感图像进行语义分割。语义分割是计算机视觉领域的一个重要任务,它旨在将图像中的每个像素分类到预定义的类别中,如建筑、道路、植被等。UNet是一种特别适用于图像分割任务的卷积神经网络结构,尤其在医学影像和遥感图像处理中表现出色。 【描述解析】 "毕业设计文件及源码" 描述表明这个压缩包包含的不仅是设计报告,还有实际的源代码。这意味着我们可以期待找到关于如何实现UNet模型的详细文档,以及用于训练和测试模型的代码。这为其他学习者或研究人员提供了复现和进一步开发该项目的可能性。 【标签解析】 "毕设" 和 "源码" 标签进一步确认了这是一个毕业设计项目,并且提供编程源代码。这使得这个资源对于那些正在做类似课题或者想了解UNet应用的学生和研究人员来说非常有价值,他们可以参考源代码来理解和学习如何构建和优化自己的模型。 【文件列表解析】 虽然具体的文件名称列表 "yuanqew" 无法提供足够的信息来推测文件的具体内容,但通常在这样的毕业设计项目中,我们可能会看到以下几类文件: 1. **设计报告**:详述项目背景、目标、方法、实验过程和结果的PDF文档。 2. **源代码**:包括使用Python或类似语言编写的训练脚本、模型定义、数据预处理和后处理函数等。 3. **数据集**:遥感图像的集合,可能分为训练集、验证集和测试集。 4. **模型文件**:训练得到的模型权重和配置文件,可能包括不同训练阶段的模型。 5. **结果展示**:图像分割的结果,对比实际图像与分割结果的可视化。 6. **README**:指导如何运行代码和理解项目的文档。 通过这个项目,学习者不仅可以了解到UNet模型在遥感图像语义分割中的应用,还能接触到数据处理、模型训练、性能评估等机器学习和深度学习的基本流程,从而提升自己的实践能力。同时,源代码的公开也有助于促进学术交流和知识分享。
2025-05-12 09:01:15 46.92MB 源码
1
内容概要:本文介绍了带有注意力机制(SE模块)的U-Net神经网络模型的构建方法。通过定义多个子模块如DoubleConv、Down、Up、OutConv和SELayer,最终组合成完整的UNet_SE模型。DoubleConv用于两次卷积操作并加入批归一化和激活函数;Down模块实现了下采样;Up模块负责上采样并将特征图对齐拼接;SELayer引入了通道间的依赖关系,增强了有效特征的学习能力。整个UNet_SE架构由编码器路径(down1-down4)、解码器路径(up1-up4)以及连接两者的跳跃连接组成,适用于医学图像分割等任务。 适合人群:有一定深度学习基础,特别是熟悉PyTorch框架和卷积神经网络的科研人员或工程师。 使用场景及目标:①研究医学影像或其他领域内的图像分割问题;②探索SE模块对于提高U-Net性能的作用;③学习如何基于PyTorch搭建复杂的深度学习模型。 其他说明:本文档提供了详细的类定义与前向传播过程,并附带了一个简单的测试用例来展示模型输入输出尺寸的关系。建议读者深入理解各个组件的功能,并尝试修改参数以适应不同的应用场景。
2025-05-09 18:28:15 4KB PyTorch 深度学习 卷积神经网络 UNet
1
标题中的"(免费)UNet语义分割-源码"表明了这个压缩包内容的核心,即提供了基于UNet架构的语义分割模型的源代码。UNet是一种在图像分割领域广泛应用的深度学习网络模型,尤其在医学图像分析、遥感图像处理等方面有着出色的表现。 描述中的"如何使用请搜索我的博客“(完结篇)什么是语义分割?原理+手写代码实现?”"提示我们,若要了解如何使用这些源代码,可以参考作者的博客文章。语义分割是计算机视觉中的一个重要任务,它的目标是将图像像素分配到预定义的类别中,从而实现对图像内容的理解和解析。在这个过程中,UNet因其特有的架构特点,能够有效地处理具有复杂结构的输入图像,并且保持较高的准确性。 标签中的"软件/插件"可能意味着提供的源代码可以作为一个模块或插件集成到其他软件系统中。"语义分割"进一步确认了这是关于图像处理的项目。"UNet"标签明确指出了所使用的网络模型。"源代码"表示这里包含的是可以直接编译和运行的程序代码,而非预训练模型或者二进制执行文件。 在压缩包中的"handle_UNet"文件可能是整个源代码项目的主文件或者一个关键处理模块,用于操作和运行UNet模型的代码可能就包含在这个文件中。通常,这样的文件会包括模型的构建、训练、验证以及推理等步骤。 关于UNet模型,它由卷积神经网络(CNN)构成,主要特点是其对称的架构,即编码器和解码器部分。编码器部分负责捕捉图像的上下文信息,通过多个卷积层和池化层逐渐减小特征图的尺寸,增加抽象程度。解码器部分则负责恢复细节,通过上采样和与编码器的跳跃连接来结合低级特征和高级语义信息,实现精确的像素级分类。 源代码中可能包括以下关键部分: 1. 数据预处理:用于准备输入图像和对应的分割掩模,可能涉及颜色归一化、大小调整等。 2. UNet模型定义:构建网络结构,包括卷积层、池化层、反卷积层以及跳跃连接。 3. 训练过程:定义损失函数、优化器,设置训练参数,如批量大小、学习率等,进行模型训练。 4. 验证与评估:在验证集上测试模型性能,可能包括精度、IoU(交并比)等指标。 5. 推理函数:用于在新图像上应用训练好的模型进行预测。 这个压缩包提供了一个完整的UNet语义分割解决方案,包含了模型的实现和可能的使用指南。对于学习深度学习特别是图像分割的开发者来说,这是一个宝贵的资源,可以通过阅读和运行源代码深入理解UNet的工作原理及其在实际应用中的实现。
2025-05-09 13:49:45 104.47MB 语义分割 UNet
1
Unet是一种在医学图像分割领域广泛使用的卷积神经网络,它由Olaf Ronneberger等人在2015年提出。Unet的主要特点是它的U形结构,能够捕捉到图像的上下文信息,并且能够进行精确的定位。Unet的结构主要分为两个部分:收缩部分(Contracting Path)和扩展部分(Expansive Path)。 收缩部分主要包含多个卷积层和最大池化层,其作用是提取图像的特征并降低图像的分辨率,使得网络能够捕获到不同尺度的特征。扩展部分则主要包含卷积层和上采样层,其作用是恢复图像的分辨率,并且将捕获到的特征融合在一起,从而实现对图像的精确分割。 Unet的训练过程中,通常需要大量的标记好的数据集。数据集中的图像需要被划分为训练集和测试集,以便训练网络和评估网络的性能。然而,在某些情况下,人们可能只拥有Unet的代码,而没有相应的数据集。这种情况下,人们可以在网络上寻找公开的数据集,例如Kaggle、MICCAI挑战赛等,或者自己制作数据集。 Unet的代码可以使用各种深度学习框架实现,例如TensorFlow、PyTorch等。在使用这些框架时,需要定义Unet的网络结构,编写训练过程,并设置合适的损失函数和优化器。损失函数用于计算模型输出与真实标签之间的差异,而优化器则用于更新模型参数以减少损失函数的值。 在训练Unet时,由于医学图像分割的复杂性,通常需要设置较高的学习率,并使用如Adam、SGD等优化算法。训练过程中,还需要设置合适的数据增强策略,如旋转、缩放、裁剪等,以增加模型的泛化能力。经过足够多的迭代后,模型便可以学习到如何对医学图像进行分割。 Unet在医学图像分割领域有着广泛的应用,例如肿瘤检测、器官分割、细胞分割等。Unet的优势在于它能够处理图像中的细小结构,并且能够将背景和目标物进行精确的分割。然而,Unet也有其局限性,例如当医学图像的分辨率非常高时,Unet的计算量会大大增加,导致训练和预测的时间变长。此外,Unet对于未见过的数据可能存在过拟合的风险,因此需要通过正则化、dropout等技术来缓解这个问题。 Unet是一种强大的图像分割工具,尽管代码本身不包含数据集,但通过合适的训练和评估,它可以在各种医学图像处理任务中发挥重要作用。
2025-05-08 13:42:29 2.66MB unet
1
内容概要:本文展示了带有CBAM注意力机制改进的U-Net架构模型的具体实现,使用PyTorch作为深度学习库。文中定义了ChannelAttention(信道注意力)和SpatialAttention(空间注意力)这两个重要子模块来提高模型对特征的理解力。接下来,还描述了网络不同层次之间的下采样、跳跃连接以及最后输出部分所使用的特定操作细节。最后,给出了模型实例化及简单调用的方法,并测试了随机生成的数据样本输出维度验证模型搭建正确无误。 适合人群:本教程主要适用于有一定机器学习或深度学习基础,并初步掌握PyTorch环境配置的相关开发者和技术爱好者,同时也非常适合从事医学影像分析或其他图像处理相关科研工作的专业研究人员用来进行项目实践探索。 使用场景及目标:这个模型可以应用于各种需要精确识别对象轮廓的任务如细胞计数检测、皮肤病灶边界分割等方面;其核心目的就是利用深度卷积神经网络提取图像特征,并借助注意力机制提升特征表达质量从而改善最终预测精度。 其他说明:此项目不仅限于二分类任务,只要调整相应的类别数即能应对多类别的情况,此外还允许用户选择不同的采样方式以适应更多种分辨率的图片处理需求。
2025-04-15 09:44:41 7KB 深度学习 PyTorch 图像分割 U-Net
1
该资源包含基于U-Net模型的医学图像分割任务完整代码及不同注意力机制(如SENet、Spatial Attention、CBAM)下的训练结果。资源实现了数据预处理、模型定义、训练与验证循环,以及结果评估与可视化,提供了详细的实验记录与性能对比(如Accuracy、Dice系数、IoU等关键指标)。代码结构清晰,易于复现和扩展,适用于医学图像分割研究和U-Net模型改进的开发者与研究者参考。 在人工智能领域,图像分割技术一直是一个备受关注的研究方向,特别是在医学图像分析中,精确的图像分割对于疾病的诊断和治疗具有重要的意义。ISIC(International Skin Imaging Collaboration)项目提供了大量的皮肤病医学图像,这对于研究和开发图像分割模型提供了宝贵的资源。UNet作为卷积神经网络(CNN)的一种变体,在医学图像分割领域表现出了优异的性能,尤其是它的结构特别适合小样本学习,并且能够捕捉图像的上下文信息。 本研究利用UNet模型对ISIC提供的皮肤病医学图像进行了分割,并在此基础上加入了注意力机制,包括SENet(Squeeze-and-Excitation Networks)、CBAM(Convolutional Block Attention Module)等,以进一步提升模型性能。注意力机制在深度学习中的作用是模拟人类视觉注意力,通过赋予网络模型关注图像中重要特征的能力,从而提高任务的准确性。SENet通过调整各个特征通道的重要性来增强网络的表现力,而CBAM则更加细致地关注到特征的二维空间分布,为网络提供了更加丰富和准确的注意力。 研究结果表明,在引入了这些注意力机制后,模型的分割准确率达到了96%,这显著高于没有使用注意力机制的原始UNet模型。这样的成果对于医学图像的精确分割具有重要的意义,能够帮助医生更准确地识别和分析病灶区域,从而为疾病的诊断和治疗提供科学依据。 本资源提供了一套完整的医学图像分割任务代码,涵盖了数据预处理、模型定义、训练与验证循环、结果评估和可视化等关键步骤。代码结构设计清晰,方便开发者复现和对模型进行扩展,不仅对医学图像分割的研究人员有帮助,同时也对那些想要深入学习图像分割的AI爱好者和学生有着极大的教育价值。 通过对比不同注意力机制下的训练结果,研究者可以更深入地理解各种注意力机制对模型性能的具体影响。实验记录详细记录了各个模型的关键性能指标,如准确率(Accuracy)、Dice系数、交并比(IoU)等,这些都是评估分割模型性能的常用指标。通过这些指标,研究者不仅能够评估模型对图像分割任务的整体性能,还能够从不同维度了解模型在各个方面的表现,从而为进一步的模型优化提供指导。 这份资源对于那些希望通过实践来学习和深入理解医学图像分割以及U-Net模型改进的研究人员和开发人员来说,是一份宝贵的资料。它不仅包含了实现高精度医学图像分割模型的代码,还提供了如何通过引入先进的注意力机制来提升模型性能的实践经验。
2025-04-06 19:24:08 440.34MB UNet 注意力机制
1
细胞分割是生物医学图像分析中的一个关键任务,它涉及到在显微镜图像中精确地识别和区分单个细胞。UNet是一种在该领域广泛应用的深度学习模型,由Ronneberger等人于2015年提出。这个模型尤其适用于像素级别的分类问题,如细胞分割、语义分割等。在本文中,我们将深入探讨UNet模型的结构、工作原理以及如何使用PyTorch实现。 **UNet模型结构** UNet模型的核心设计理念是快速的信息传递和上下文信息的结合。它主要由两部分组成:编码器(Encoder)和解码器(Decoder)。编码器部分采用卷积神经网络(CNN)进行特征提取,类似于传统的图像分类网络,例如VGG或ResNet。解码器则负责恢复高分辨率的输出,通过上采样和跳跃连接(Skip Connections)将编码器的浅层特征与解码器的深层特征相结合,以保留更多的空间信息。 1. **编码器**:UNet的编码器通常由多个卷积层和池化层组成,每个阶段的输出特征图尺寸减小,特征维度增加,从而获取更高级别的抽象特征。 2. **跳跃连接**:在解码器阶段,每个解码层都与其对应的编码层通过跳跃连接进行融合,将低级别特征与高级别特征融合,增强分割的准确性。 3. **解码器**:解码器通过上采样操作恢复图像的原始分辨率,同时结合编码器的特征,最后通过一个或多个卷积层生成分割掩模。 **PyTorch实现** 在PyTorch中实现UNet模型,我们需要定义编码器、解码器以及跳跃连接的结构。以下是一般步骤: 1. **定义基础网络**:选择一个预训练的分类网络作为编码器,如ResNet18或VGG16,然后移除全连接层。 2. **构建解码器**:创建一系列的上采样层,每个层包含一个反卷积(Transpose Convolution)和两个卷积层,用于特征融合和输出映射。 3. **添加跳跃连接**:在解码器的每个上采样层之后,将编码器相应层的输出与之拼接,以利用低级特征。 4. **损失函数**:选择适当的损失函数,如Dice Loss或交叉熵损失,以适应像素级别的分割任务。 5. **优化器**:选择合适的优化器,如Adam或SGD,设置学习率和其他超参数。 6. **训练流程**:加载数据集,对模型进行训练,通常包括数据增强、批处理和epoch迭代。 7. **评估与测试**:在验证集和测试集上评估模型性能,如计算Dice系数、Jaccard相似度等指标。 **数据集准备** 在细胞分割任务中,数据集通常包含标注的细胞图像。每个图像与其对应的分割掩模一起,用于训练和评估模型。数据预处理可能包括归一化、缩放、裁剪等步骤,以适应模型的输入要求。此外,可以使用数据增强技术,如旋转、翻转、缩放等,以增加模型的泛化能力。 在提供的文件"u_net"中,可能包含了实现UNet模型的PyTorch代码、数据集处理脚本、配置文件以及训练和评估脚本。通过研究这些文件,我们可以深入了解如何将UNet应用于具体的数据集,并对其进行训练和优化。如果你想要自己动手实践,可以按照代码的指导逐步进行,调整模型参数,以适应不同的细胞分割任务。
2025-04-06 14:55:56 134.92MB 数据集
1
**图像分割:Pytorch实现UNet++进行医学细胞分割** 图像分割是计算机视觉领域中的一个核心任务,它涉及将图像划分为多个具有不同语义意义的区域或对象。在医学成像中,图像分割尤其重要,因为它可以帮助医生识别和分析病灶、细胞结构等。PyTorch是一个流行的深度学习框架,其强大的灵活性和易用性使其成为实现复杂网络结构如UNet++的理想选择。 **UNet++简介** UNet++是一种改进的UNet架构,由Zhou等人于2018年提出,旨在解决UNet在处理重叠边界区域时的局限性。UNet++通过引入一系列密集的子网络连接,提高了特征融合的效率,从而在像素级别的预测上表现出更优的性能。这种设计特别适合对细胞、组织等微小结构的高精度分割。 **PyTorch实现** 在PyTorch中实现UNet++通常包括以下几个关键步骤: 1. **数据集处理**(dataset.py):你需要准备训练和验证数据集,这通常包括预处理图像和相应的标注图。`dataset.py`中会定义数据加载器,以批处理的方式提供图像和标签。 2. **模型结构**(archs.py):UNet++的结构由编码器(通常是预训练的卷积神经网络如ResNet)和解码器组成,它们之间通过跳跃连接和密集子网络连接。`archs.py`文件将定义UNet++的网络结构。 3. **训练过程**(train.py):在`train.py`中,你会设置训练参数,如学习率、优化器、损失函数(例如Dice损失或交叉熵损失)、训练迭代次数等,并实现训练循环。 4. **验证与评估**(val.py):验证脚本`val.py`用于在验证集上评估模型性能,通常会计算一些度量标准,如Dice系数或IoU(交并比),以衡量分割结果的质量。 5. **辅助函数**(losses.py, metrics.py, utils.py):这些文件包含损失函数实现、评估指标和一些通用工具函数,如保存模型、可视化结果等。 6. **命令行参数**(cmd.txt):`cmd.txt`可能包含运行训练或验证脚本时的命令行参数,比如指定设备(GPU/CPU)、数据路径等。 7. **开发环境配置**(.gitignore, .vscode):`.gitignore`文件定义了在版本控制中忽略的文件类型,`.vscode`可能是Visual Studio Code的配置文件,用于设置代码编辑器的偏好。 在实际应用中,你还需要考虑以下几点: - **数据增强**:为了增加模型的泛化能力,通常会在训练过程中使用数据增强技术,如旋转、翻转、缩放等。 - **模型优化**:根据任务需求调整网络结构,例如添加更多层、调整卷积核大小,或者采用不同的损失函数来优化性能。 - **模型部署**:训练完成后,将模型部署到实际应用中,可能需要将其转换为更轻量级的形式,如ONNX或TensorRT,以适应硬件限制。 通过理解并实现这个项目,你可以深入掌握基于PyTorch的深度学习图像分割技术,尤其是UNet++在医学细胞分割领域的应用。同时,这也会涉及到数据处理、模型构建、训练策略和性能评估等多个方面,对提升你的深度学习技能大有裨益。
2025-04-05 10:29:58 40.38MB pytorch unet 图像分割
1
Swin-Unet是一种基于Swin Transformer的深度学习网络模型,主要应用于图像分割任务。Swin Transformer是Transformer架构在计算机视觉领域的一个创新应用,由Liu等人于2021年提出。它通过引入窗口内的自注意力机制,解决了传统Transformer全局自注意力计算复杂度高的问题,同时保持了对长程依赖的捕捉能力。 Swin Transformer的核心是层次化的结构,分为多个阶段,每个阶段由多个Swin Transformer块组成。这些块内部包含两个主要部分:窗口自注意力层(Window-based Multi-Head Self-Attention, W-MSA)和多层感知机(MLP)。W-MSA在每个窗口内进行自注意力计算,降低了计算复杂度,同时通过移窗策略连接相邻窗口,实现了跨窗口的信息交换。MLP则负责非线性变换,增强特征表达。 Swin-Unet是Swin Transformer与经典Unet结构的结合,继承了Unet的对称双路径设计,用于处理像素级预测任务,如语义分割。Unet的特点是其上下采样和上采样路径,能够有效地结合粗略的全局信息和精细的局部细节,从而在图像分割任务中表现出色。Swin-Unet将Swin Transformer模块集成到Unet的每个跳跃连接中,提高了模型的表示能力和分割精度。 预训练模型“swin-tiny-patch-window7-224.pth”是Swin-Unet网络在大规模数据集上训练得到的权重,其中"swin-tiny"表示这是一个轻量级的模型配置,适合资源有限的环境;"patch-window7"指的是模型使用了7x7的窗口大小进行注意力计算;"224"则代表输入图像的尺寸为224x224像素。这个预训练模型可以被用于初始化自己的Swin-Unet网络,然后在特定任务的微调上使用,以提高模型对新任务的适应性和性能。 在实际应用中,使用Swin-Unet进行图像分割时,首先需要加载这个预训练模型的权重,然后根据目标任务调整网络结构,例如改变输出通道的数量以匹配类别数。接着,用目标数据集进行微调,优化器通常选择Adam或SGD,学习率会采用余弦退火或步进衰减策略。在训练过程中,可以通过监控验证集的表现来调整超参数,以达到最佳性能。 Swin-Unet模型结合了Transformer的全局信息处理能力和Unet的高效特征融合,尤其适用于需要精确像素级预测的任务,如医疗影像分析、遥感图像处理等。而“swin-tiny-patch-window7-224.pth”预训练模型则为研究人员和开发者提供了一个强大的起点,帮助他们更快地在相关领域实现高性能的解决方案。
2025-04-03 21:06:18 100.11MB 机器学习
1
每年有超过 400,000 例新发肾癌病例,手术是其最常见的治疗方法。由于肾脏和肾脏肿瘤形态的多样性,目前人们对肿瘤形态如何与手术结果相关 ,以及开发先进的手术计划技术 非常感兴趣。自动语义分割是这些工作的一个很有前途的工具,但形态异质性使其成为一个难题。 这一挑战的目标是加速可靠的肾脏和肾脏肿瘤语义分割方法的发展。我们已经为 300 名在我们机构接受部分或根治性肾切除术的独特肾癌患者的动脉期腹部 CT 扫描生成了真实语义分割。其中 210 个已发布用于模型训练和验证,其余 90 个将保​​留用于客观模型评估。
2025-04-01 19:37:00 33.12MB 计算机视觉 unet python 图像分割
1