Unet分割的代码不含有数据集

上传者: m0_74055982 | 上传时间: 2025-05-08 13:42:29 | 文件大小: 2.66MB | 文件类型: ZIP
Unet是一种在医学图像分割领域广泛使用的卷积神经网络,它由Olaf Ronneberger等人在2015年提出。Unet的主要特点是它的U形结构,能够捕捉到图像的上下文信息,并且能够进行精确的定位。Unet的结构主要分为两个部分:收缩部分(Contracting Path)和扩展部分(Expansive Path)。 收缩部分主要包含多个卷积层和最大池化层,其作用是提取图像的特征并降低图像的分辨率,使得网络能够捕获到不同尺度的特征。扩展部分则主要包含卷积层和上采样层,其作用是恢复图像的分辨率,并且将捕获到的特征融合在一起,从而实现对图像的精确分割。 Unet的训练过程中,通常需要大量的标记好的数据集。数据集中的图像需要被划分为训练集和测试集,以便训练网络和评估网络的性能。然而,在某些情况下,人们可能只拥有Unet的代码,而没有相应的数据集。这种情况下,人们可以在网络上寻找公开的数据集,例如Kaggle、MICCAI挑战赛等,或者自己制作数据集。 Unet的代码可以使用各种深度学习框架实现,例如TensorFlow、PyTorch等。在使用这些框架时,需要定义Unet的网络结构,编写训练过程,并设置合适的损失函数和优化器。损失函数用于计算模型输出与真实标签之间的差异,而优化器则用于更新模型参数以减少损失函数的值。 在训练Unet时,由于医学图像分割的复杂性,通常需要设置较高的学习率,并使用如Adam、SGD等优化算法。训练过程中,还需要设置合适的数据增强策略,如旋转、缩放、裁剪等,以增加模型的泛化能力。经过足够多的迭代后,模型便可以学习到如何对医学图像进行分割。 Unet在医学图像分割领域有着广泛的应用,例如肿瘤检测、器官分割、细胞分割等。Unet的优势在于它能够处理图像中的细小结构,并且能够将背景和目标物进行精确的分割。然而,Unet也有其局限性,例如当医学图像的分辨率非常高时,Unet的计算量会大大增加,导致训练和预测的时间变长。此外,Unet对于未见过的数据可能存在过拟合的风险,因此需要通过正则化、dropout等技术来缓解这个问题。 Unet是一种强大的图像分割工具,尽管代码本身不包含数据集,但通过合适的训练和评估,它可以在各种医学图像处理任务中发挥重要作用。

文件下载

资源详情

[{"title":"( 71 个子文件 2.66MB ) Unet分割的代码不含有数据集","children":[{"title":"unet-master - 副本","children":[{"title":"labelme2seg.py <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"bmp转png.py <span style='color:#111;'> 1001B </span>","children":null,"spread":false},{"title":"data","children":[{"title":"Training_Images","children":null,"spread":false},{"title":"Test_Images","children":null,"spread":false},{"title":"Test_Labels","children":null,"spread":false},{"title":"results","children":null,"spread":false},{"title":"Training_Labels","children":null,"spread":false}],"spread":true},{"title":"predict.py <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"dataset.py <span style='color:#111;'> 2.81KB </span>","children":null,"spread":false},{"title":"utils_metrics.py <span style='color:#111;'> 9.26KB </span>","children":null,"spread":false},{"title":"gen_split.py <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"label2png.py <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"dataset.cpython-37.pyc <span style='color:#111;'> 1.81KB </span>","children":null,"spread":false},{"title":"utils_metrics.cpython-37.pyc <span style='color:#111;'> 6.01KB </span>","children":null,"spread":false},{"title":"utils_metrics.cpython-38.pyc <span style='color:#111;'> 6.35KB </span>","children":null,"spread":false},{"title":"dataset.cpython-38.pyc <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false}],"spread":true},{"title":"data_remove_seg.py <span style='color:#111;'> 730B </span>","children":null,"spread":false}],"spread":true},{"title":".idea","children":[{"title":"unet_42-new.iml <span style='color:#111;'> 472B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 7.83KB </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 272B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"Project_Default.xml <span style='color:#111;'> 510B </span>","children":null,"spread":false},{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true},{"title":"modules.xml <span style='color:#111;'> 274B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 176B </span>","children":null,"spread":false}],"spread":true},{"title":"bmp转jpg.py <span style='color:#111;'> 1.00KB </span>","children":null,"spread":false},{"title":"model","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"unet_parts.py <span style='color:#111;'> 3.39KB </span>","children":null,"spread":false},{"title":"unet_model.py <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"unet_parts.cpython-37.pyc <span style='color:#111;'> 2.79KB </span>","children":null,"spread":false},{"title":"unet_model.cpython-38.pyc <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"unet_parts.cpython-38.pyc <span style='color:#111;'> 2.75KB </span>","children":null,"spread":false},{"title":"unet_model.cpython-37.pyc <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false},{"title":"__init__.cpython-37.pyc <span style='color:#111;'> 141B </span>","children":null,"spread":false},{"title":"__init__.cpython-38.pyc <span style='color:#111;'> 161B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 143B </span>","children":null,"spread":false},{"title":"images","children":[{"title":"tmp","children":[{"title":"tmp_upload.jpeg <span style='color:#111;'> 21.27KB </span>","children":null,"spread":false}],"spread":true},{"title":"up.jpeg <span style='color:#111;'> 21.27KB </span>","children":null,"spread":false},{"title":"ISIC_0000000.jpg <span style='color:#111;'> 48.79KB </span>","children":null,"spread":false},{"title":"right.jpeg <span style='color:#111;'> 26.57KB </span>","children":null,"spread":false},{"title":"111","children":[{"title":"ISIC_0000000.jpg <span style='color:#111;'> 48.79KB </span>","children":null,"spread":false},{"title":"ISIC_0000000_res.png <span style='color:#111;'> 4.76KB </span>","children":null,"spread":false}],"spread":false},{"title":"ISIC_0000000_res.png <span style='color:#111;'> 4.72KB </span>","children":null,"spread":false},{"title":"UI","children":[{"title":"lufei.png <span style='color:#111;'> 215.70KB </span>","children":null,"spread":false},{"title":"logo.jpeg <span style='color:#111;'> 33.37KB </span>","children":null,"spread":false},{"title":"up.jpeg <span style='color:#111;'> 27.88KB </span>","children":null,"spread":false},{"title":"right.jpeg <span style='color:#111;'> 25.45KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"testdata","children":[{"title":"jsons","children":[{"title":"Case-5-U-10-0.json <span style='color:#111;'> 78.91KB </span>","children":null,"spread":false},{"title":"Case-2-U-2-3.json <span style='color:#111;'> 89.63KB </span>","children":null,"spread":false},{"title":"Case-4-U-8-1.json <span style='color:#111;'> 85.46KB </span>","children":null,"spread":false},{"title":"Case-3-U-5-0.json <span style='color:#111;'> 83.71KB </span>","children":null,"spread":false},{"title":"Case-5-U-10-1.json <span style='color:#111;'> 82.62KB </span>","children":null,"spread":false},{"title":"Case-4-U-8-0.json <span style='color:#111;'> 84.39KB </span>","children":null,"spread":false},{"title":"Case-3-U-5-2.json <span style='color:#111;'> 83.12KB </span>","children":null,"spread":false},{"title":"Case-3-U-5-3.json <span style='color:#111;'> 80.91KB </span>","children":null,"spread":false},{"title":"Case-1-U-1-1.json <span style='color:#111;'> 65.34KB </span>","children":null,"spread":false},{"title":"Case-2-U-2-2.json <span style='color:#111;'> 77.86KB </span>","children":null,"spread":false}],"spread":true},{"title":"labels","children":[{"title":"Case-3-U-5-0.png <span style='color:#111;'> 3.55KB </span>","children":null,"spread":false},{"title":"Case-2-U-2-3.png <span style='color:#111;'> 3.25KB </span>","children":null,"spread":false},{"title":"Case-4-U-8-0.png <span style='color:#111;'> 3.02KB </span>","children":null,"spread":false},{"title":"Case-4-U-8-1.png <span style='color:#111;'> 2.44KB </span>","children":null,"spread":false},{"title":"Case-3-U-5-3.png <span style='color:#111;'> 3.24KB </span>","children":null,"spread":false},{"title":"Case-1-U-1-1.png <span style='color:#111;'> 3.18KB </span>","children":null,"spread":false},{"title":"Case-3-U-5-2.png <span style='color:#111;'> 3.59KB </span>","children":null,"spread":false},{"title":"Case-2-U-2-2.png <span style='color:#111;'> 2.82KB </span>","children":null,"spread":false},{"title":"Case-5-U-10-0.png <span style='color:#111;'> 3.47KB </span>","children":null,"spread":false},{"title":"Case-5-U-10-1.png <span style='color:#111;'> 3.46KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"train.py <span style='color:#111;'> 2.46KB </span>","children":null,"spread":false},{"title":"__pycache__","children":null,"spread":false},{"title":"ui.py <span style='color:#111;'> 8.04KB </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 4.17KB </span>","children":null,"spread":false},{"title":"results","children":[{"title":"Precision.png <span style='color:#111;'> 14.70KB </span>","children":null,"spread":false},{"title":"mPA.png <span style='color:#111;'> 14.85KB </span>","children":null,"spread":false},{"title":"Recall.png <span style='color:#111;'> 14.06KB </span>","children":null,"spread":false},{"title":"confusion_matrix.csv <span style='color:#111;'> 68B </span>","children":null,"spread":false},{"title":"mIoU.png <span style='color:#111;'> 15.56KB </span>","children":null,"spread":false}],"spread":false},{"title":"unet原文.pdf <span style='color:#111;'> 1.57MB </span>","children":null,"spread":false},{"title":"切换镜像.txt <span style='color:#111;'> 348B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明