机器学习支持的虚假新闻检测器 从初始构想到部署,构建端到端机器学习项目的完整示例。 此回购随附于博客文章系列,描述了如何构建假新闻检测应用程序。 这里包含的帖子: :描述项目构想,设置存储库和初始项目工具。 :描述如何使用工具获取数据集并执行探索性数据分析,以便更好地理解问题。 :描述如何为第一个ML模型(随机森林分类器)获得功能训练/评估管道,包括如何正确测试管道的各个部分。 :描述如何解释通过特征分析(通过诸如类的技术)和错误分析所学的第一个模型。 也可用于由驱动的第二个模型。 :描述如何使用和部署模型以及构建随附的Chrome扩展程序。 还说明了用于以可伸缩和可复制的方式在应
1
ecco:可视化和探索NLP语言模型。 Ecco直接在Jupyter笔记本中创建交互式可视化文件,解释基于Transformer的语言模型(例如GPT2)的行为
1
暹罗深度神经网络的语义相似性。 该存储库包含Tensorflow中的暹罗神经网络的实现,该实现基于3种不同的主要深度学习架构构建: 卷积神经网络 递归神经网络 多头注意力网络 创建该存储库的主要原因是将GitHub上主要基于CNN和RNN架构构建的Siamese神经网络的知名实现方案与基于Transformer模型最初由提出的基于多头注意力机制构建的Siamese神经网络进行比较,这论文。 。 支持的数据集 当前版本的管道支持使用3个数据集: :NEW_button: 对抗自然语言推论(ANLI)基准: , 安装 资料准备 为了下载数据,请执行以下命令(此过程可能需要一段时间,具体取决于您的网络吞吐量):
1
RBERT:R中的BERT实现
2021-11-24 22:54:39 1.85MB nlp natural-language-processing tensorflow rstudio
1
seqGAN PyTorch实现的“ SeqGAN:具有策略梯度的序列生成对抗网络”。 (于兰涛等)。 该代码经过高度简化,注释和(希望)易于理解。 实施的策略梯度也比原始工作( )简单得多,并且不涉及推广-整个句子使用单一奖励(受的示例启发) )。 使用的体系结构与原始工作中的体系结构不同。 具体而言,将循环双向GRU网络用作鉴别器。 该代码按论文中所述对合成数据进行实验。 我们鼓励您对代码作为问题的工作方式提出任何疑问。 要运行代码: python main.py main.py应该是您进入代码的入口。 技巧与观察 在这种情况下,以下黑客(从借来)似乎有效: 培训鉴别器
1
自然语言预处理(NLPre) 主要版本更新! NLPre 2.0.0 后端NLP引擎pattern.en已被spaCy v 2.1.0取代。 这是针对pattern.en某些问题(包括不良lemmatization)的主要解决方案。 (例如,细胞因子->细胞牛) 对python 2的支持已被删除 在replace_from_dictionary支持自定义词典 在replace_from_dictionary使用后缀而不是前缀的选项 URL替换现在可以删除电子邮件 token_replacement可以删除符号 NLPre是一个文本(预处理)库,可帮助消除实际数据中发现的某些不一致之处。 纠
1
伯特 ***** 2020年3月11日新产品:更小的BERT模型***** 此版本发行了24个较小的BERT模型(仅限英语,无大小写,使用WordPiece掩码进行了培训),在读物精通的 。 我们已经证明,除了BERT-Base和BERT-Large之外,标准BERT配方(包括模型体系结构和训练目标)对多种模型尺寸均有效。 较小的BERT模型适用于计算资源有限的环境。 可以按照与原始BERT模型相同的方式对它们进行微调。 但是,它们在知识提炼的情况下最有效,在这种情况下,微调标签是由更大,更准确的老师制作的。 我们的目标是允许在计算资源较少的机构中进行研究,并鼓励社区寻找替代增加模型容量的创新方向。 您可以从 下载全部24个,也可以从下表单独下载: 高= 128 高= 256 高= 512 高= 768 L = 2 L = 4 L = 6 L = 8 L = 10 L = 12 请注意,此版本中包含的BERT-Base模型仅出于完整性考虑; 在与原始模型相同的条件下进行了重新训练。 这是测试集上相应的GLUE分数: 模型 得分 可乐 SST-2 MR
2021-11-08 15:02:52 106KB nlp natural-language-processing google tensorflow
1
| 本项目提供了针对中文的XLNet预训练模型,扩展了丰富的自然语言处理资源,提供多种中文预训练模型选择。我们欢迎各位专家学者下载使用,并共同促进和发展中文资源建设。 本项目基于CMU /谷歌官方的XLNet: : 其他相关资源: MacBERT预训练模型: : 中文ELECTRA预训练模型: : 中文BERT-wwm预训练模型: : 知识蒸馏工具TextBrewer: : 查看更多哈工大讯飞联合实验室(HFL)发布的资源: : 新闻 2021年1月27日所有模型已支持TensorFlow 2,请通过变压器库进行调用或下载。 2020/9/15我们的论文被录用为长文。 2020/8/27哈工大讯飞联合实验室在通用自然语言理解评论GLUE中荣登榜首,查看,。 2020/3/11为了更好地了解需求,邀请您填写,刹车为大家提供更好的资源。 2020/2/26哈工大讯飞联合实验室发布 历史新闻2019/12/19本目录发布的模型已接受[Huggingface-Transformers]( ) 2019/9/5 XLNet-base已可下载,查看 2019/8/1
1
GPT-2 PyTorch实施 目录 介绍 该项目是OpenAI GPT-2模型的PyTorch实现。 它提供模型训练,句子生成和量度可视化。 它被认为是可以理解和优化的。 我们设计的代码易于理解。 另外,我们使用来提高性能。 依存关系 正则表达式 tqdm 火炬 麻木 matplotlib 用法 怎么训练? 在训练GPT-2模型之前,应准备语料库数据集。 我们建议使用构建自己的语料库。 相反,训练模块需要带有词汇表文件的标记化训练和评估数据集。 准备数据集后,可以使用以下方法训练GPT-2: $ python -m gpt2 train --train_corpus build/corpus.train.txt \ --eval_corpus build/corpus.test.txt \
1
XLNet-Pytorch 使用Pytorch包装器可轻松实现XLNet! 您可以看到XLNet Architecture如何以小批量(= 1)进行预训练的示例。 用法 $ git clone https://github.com/graykode/xlnet-Pytorch && cd xlnet-Pytorch # To use Sentence Piece Tokenizer(pretrained-BERT Tokenizer) $ pip install pytorch_pretrained_bert $ python main.py --data ./data.txt --tokenizer bert-base-uncased \ --seq_len 512 --reuse_len 256 --perm_size 256 \ --bi_data True --mask_alpha 6 --mask_beta 1 \ --num_predict 85 --mem_len 384 --num_epoch 100 另外,您可以轻松地在运行代码。 纸中预训练的
2021-10-12 09:54:59 545KB nlp natural-language-processing pytorch bert
1