聚合视图对象检测 此存储库包含用于3D对象检测的聚合视图对象检测(AVOD)网络的Python实现的公共版本。 ( ,( ,,( ,( 如果您使用此代码,请引用我们的论文: @article{ku2018joint, title={Joint 3D Proposal Generation and Object Detection from View Aggregation}, author={Ku, Jason and Mozifian, Melissa and Lee, Jungwook and Harakeh, Ali and Waslander, Steven}
2024-05-05 15:54:37 24.01MB deep-learning object-detection
1
语音活动检测项目 关键字:Python,TensorFlow,深度学习,时间序列分类 目录 1.11.21.3 2.12.2 5.15.2将5.35.4 去做 资源 1.安装 该项目旨在: Ubuntu的20.04 的Python 3.7.3 TensorFlow 1.15.4 $ cd /path/to/project/ $ git clone https://github.com/filippogiruzzi/voice_activity_detection.git $ cd voice_activity_detection/ 1.1基本安装 $ pip3 install -r requirements.txt $ pip3 install -e . 1.2虚拟环境安装 1.3 Docker安装 构建docker镜像: $ sudo make build (这可能
1
ist的matlab代码B蛇道检测的C ++实现 这是基于Wang等人的bsnake论文进行车道检测的代码。 什么是基于B蛇的车道模型 它描述了平行线的透视效果是通过双重外力构造的,用于通用车道边界或标记 与其他车道模型(例如直线和抛物线模型)相比,它能够描述更广泛的车道结构。 由于在地面上使用了平行的道路知识,因此它对阴影,噪声和其他方面具有鲁棒性。 通过确定车道模型控制点的集合来制定车道检测问题。 消失点的Canny / Hough估计(CHEVP)算法 它是一种健壮的算法,可为B蛇道模型提供良好的初始位置,该模型对于捕获的道路图像中的噪声,阴影和照明变化具有鲁棒性。 它也适用于标记和未标记的划线油漆线和实心油漆线道路。 CHEVP算法如何工作 假定该道路在地面上具有两个平行边界,并且在短的图像水平带中,该道路近似是笔直的。 作为透视投影的结果,图像平面中的道路边界应在地平线上的共享消失点处相交。 CHEVP算法有五个处理阶段: 通过Canny边缘检测提取边缘像素。 Canny边缘检测用于获得边缘图。 通过霍夫变换进行直线检测。 地平线和消失检测。 通过检测到的道路线估计道路的中线
2024-03-23 12:08:13 4.17MB 系统开源
1
情绪识别:通过面部表情和语音进行双峰情绪识别
2024-03-04 20:54:19 161KB matlab face-detection emotion-recognition
1
kaggle2017年人脸检测数据集,文件内包括人脸数据和非人脸数据的mat文件。
2024-02-19 11:44:56 8.19MB 人脸数据集 人脸检测
1
自主车辆的基于预测的GNSS欺骗攻击检测 python中基于预测的自动驾驶汽车GNSS欺骗攻击检测的实验实现更多信息,请参见
2024-01-14 22:49:53 7KB Python
1
整个项目源码: 整个项目数据集:、 引言 本次分享主要介绍,如何对道路上的汽车进行识别与跟踪。这里我们实现一个简单的demo。后续我们还会对前面的代码及功能进行重构,从而进一步丰富我们的功能。 项目软件框架 下图是车辆检测的实现流程图: 具体内容如下: 在有标签的训练数据集上进行Histogram of Oriented Gradients(HOG)特征提取 Normalize 这些特征,并随机化数据集 训练线性SVM分类器 实现一个滑动窗口技术,并使用训练好的分类器在图片中寻找车辆 实现一个流处理机制,并通过一帧一帧地创建循环检测的热图来去除异常值及跟踪车辆 为检测到的车辆估计一个边界框 Features 本项目,我们使用一些有标签的训练数据:汽车图片、无汽车图片,训练数据在all文件夹中可以找到 有汽车地图片标签为1,无汽车的图片标签为0 我们先读取数据,看下数据的分布 # impor
2024-01-12 15:46:31 28.45MB JupyterNotebook
1
车辆和车道线检测与跟踪 固态硬盘 Yolo3 神经网络 概述 将车道发现和车辆检测项目结合在一起。 添加汽车类别以跟踪检测到的车辆的位置(边界框)和历史记录。 沿摄像机方向覆盖车道的鸟瞰图的透视变换用于测量摄像机的x和y位移。 给出了使用SSD,Yolo3和Mask R-CNN模型的结果。 以米为单位的相对距离(dx,dy)显示在检测到的汽车的边界框上方。 边界框下方显示了以公里/小时为单位的相对速度(vx,vy)。 视频的左上方还提供了缩略图以及检测到的车辆的距离/速度。 车辆按照边框的大小按降序排序。 数据集 项目数据集由Udacity提供。 它分为和。 该数据集是KITTI视觉基准套件和GTI车辆图像数据库的组合。 GTI车辆图像分为远,左,右,中间关闭。 这些是汽车和非汽车的示例: 奇蒂 GTI远 GTI关闭 GTI左 GTI权利 非汽车1 非汽车2 非汽车3
2024-01-12 15:30:28 472MB Python
1
基于视频的脉冲检测数据集 打开数据集以进行基于视频的脉冲检测。 包括.mp4视频文件和地面真实心电图信号 影片在两种身体状况下的20秒视频片段:静止和进行体育锻炼后 心电图使用以.cardio和.txt格式记录的20秒ECG .cardio-可以使用软件打开 .txt-包含来自六个引线(I,II,III,avR,avL,avF)的六个信号
2023-12-10 10:31:52 1.24GB
1