跨键能量转移(TBET)用于构建高效比率型荧光探针,龚毅君,张翠翠,目前荧光共振能量转移(FRET)已经被广泛应用于设计比率型荧光成像探针。然而,为了提高能量转移效率,FRET体系需要给体的发射光谱�
2025-05-16 02:43:59 1.48MB 首发论文
1
基于NXP方案的高效反电动势观测器仿真模型:融合结构简化与功能分区的电机控制策略研究,"基于NXP方案定子电流误差dq轴反电动势观测器模型研究:结合行业趋势及仿真特点详解",基于定子电流误差的dq轴反电动势观测器仿真模型 公开资料显示NXP, Renesas等大厂均使用该反电动势模型,国内某厂家早期版本也使用该反电动势观测器,可见该观测器的独到之处; 知乎上有大佬对该观测器点评承认其特殊之处,该类观测器是闭环类观测器(输出影响输入),行业有使用该类观测器渐多的趋势。 仿真特点: 1. 反电动势观测器部分使用NXP方案,结构简单,参数易调节; 2. 锁相环部分经过特殊处理,任意初始角度都可以闭环直接启动; 3. 可施加一定的初始负载,带载启动能力优秀; 4. 模型严格功能分区,除了观测器还包括MTPA、弱磁、电流环和速度环参数整定等部分,可使电机运行到额定状态 5. 包含基本公式注释,标幺值系统,离散模型 6. 通用表贴和内嵌式电机; 文件包括: 1. 仿真模型文件(2020b版本,可转低版本) 2. Renesas, NXP应用笔记各一篇 ,基于定子电流误差;dq轴反电动势观测器;
2025-05-14 22:59:10 358KB xhtml
1
内容概要:本文详细介绍了用于智能车竞赛微缩电磁组的无线充电LCC-S仿真模型。该模型采用Simulink搭建,主要针对48V输入、1000W输出的无线充电系统进行仿真。文中不仅提供了具体的谐振参数(如L1=35uH,C1=62nF,C2=72nF),还分享了调整死区时间、耦合系数、负载突变测试等实践经验。此外,作者强调了实际应用中的注意事项,如元件选型、散热设计以及仿真与现实差异的处理方法。 适合人群:参与智能车竞赛的学生和技术爱好者,尤其是对无线充电技术和电力电子感兴趣的读者。 使用场景及目标:①帮助参赛队伍快速建立高效的无线充电系统仿真模型;②指导实际硬件搭建过程中参数的选择和优化;③提高系统效率,确保在比赛中的可靠性和性能。 其他说明:本文提供的模型已在Matlab 2023b中验证可行,建议使用者根据实际情况调整参数,并关注仿真与实际应用之间的差异。
2025-05-14 22:25:09 678KB
1
“fluent_edem流固三相耦合教学及代码二次开发——GPU加速仿真,真实模拟颗粒流体相互作用”,《fluent_edem流固耦合模拟:教学、代做与代码二次开发,多用途仿真软件及其高效计算》,fluent_edem流固耦合方面的教学或者代做或者代码二次开发,气液固三相耦合。 接口优化,计算速率大大提升。 模拟散体和颗粒材料的离散元法多用途仿真软件,支持GPU加速,与颗粒流软件PFC相比,具有友好的图形用户界面、更快的运算速度。 内容包括滑坡涌浪等颗粒流体耦合作用,考虑粒子碰撞,更加实际模拟真实场景。 ,fluent_edem;流固耦合教学/代做/代码开发;气液固三相耦合;接口优化;计算速率提升;离散元法仿真;GPU加速;滑坡涌浪模拟;粒子碰撞模拟;真实场景模拟,流固耦合与离散元法模拟教学及代码开发,提升计算速率及场景模拟效果。
2025-05-14 16:27:02 2.1MB gulp
1
优化后的PFC2D颗粒离散元数值模拟试验合集:直剪、单轴与双轴压缩并行高效运行代码集,优化后PFC2D颗粒离散元数值模拟试验合集:高效单直剪与单双轴压缩并行运行代码集,该模型是一个PFC2D颗粒离散元常用数值模拟试验合集: 直剪、单轴压缩、双轴压缩等多个常用代码均为优化修改后的代码,运行通畅效率高 并且本代码将单轴和双轴结合在一起,实现了单、双轴并行运行,效率高,速度快。 ,PFC2D;颗粒离散元;数值模拟试验;直剪;单轴压缩;双轴压缩;并行运行;高效率。,优化版PFC2D颗粒离散元模拟试验集:直剪、压缩并行运行高效模型
2025-05-12 15:17:43 1.71MB 数据结构
1
改进的RIME霜冰优化器:深度探索与开发行为的高效优化算法,改进的霜冰优化器(IRIME),RIME一种基于霜冰物理现象的高效优化算法,称为霜冰优化算法Rime optimization algorithm,RIME。 RIME算法通过模拟冰的软时间和硬时间生长过程,构建软时间搜索策略和硬时间穿刺机制,实现优化方法中的探索和开发行为。 于2023年发表在中科院二区顶刊Neurocomputing,结构简单,性能优越。 本改进为改进,改进 - 使用三个改进策略,而且这些策略都不是大众化,被用烂了的策略,效果也非常好 ,在CEC2017效果如下: ,RIME算法; 霜冰物理现象; 优化策略; 探索开发行为; 改进策略; 软时间搜索策略; 硬时间穿刺机制; CEC2017; Neurocomputing中科院二区顶刊; 性能优越。,改进版霜冰优化器:Rime算法的新探索与高性能实现
2025-05-12 11:45:42 1.27MB scss
1
基于YOLOV8的智能道路缺陷检测系统:实现裂缝、交通设施及坑槽洼地的高效识别,创新点融合PyQt界面优化UI体验,支持图像视频输入直接获取检测结果。,基于YOLOV8算法的道路缺陷智能检测系统:实现裂缝、交通设施及坑槽洼地精准识别,创新点融合PyQt界面与UI操作体验优化,基于YOLOV8道路缺陷检测,系列实现道路场景的裂缝、交通设施、坑槽洼地等区域的检测, pyqt界面+创新点 UI界面,支持图像视频输入直接获取结果 ,基于YOLOV8; 道路缺陷检测; 裂缝检测; 交通设施检测; 坑槽洼地检测; pyqt界面; 创新点; UI界面; 图像视频输入,基于YOLOV8的智能道路场景检测系统:UI界面加持的检测方案与创新点
2025-05-11 15:27:52 342KB xhtml
1
培训课件 -FAST高效课程开发.pptx
2025-05-10 19:22:25 900KB
1
基于Simulink平台的110kV智能电网继电保护设计与实现:提升电力系统的安全稳定性,基于Simulink的110kV继电保护系统设计与实现:高效、稳定、可靠的电力保障方案,基于simulink实现的110kV继电保护设计实现 ,基于Simulink实现; 110kV继电保护设计; 关键技术实现; 保护装置配置; 安全性保障。,基于Simulink的110kV继电保护系统设计与实现 在当今的电力系统中,随着电网规模的不断扩大和智能化程度的提高,对于电网的安全稳定运行提出了更高的要求。传统的继电保护系统虽然能提供一定程度上的保护,但在面对复杂多变的电网环境时,往往显得力不从心。为了应对这一挑战,基于Simulink平台的110kV智能电网继电保护设计与实现成为了一种高效、稳定、可靠的电力保障方案。 Simulink是MATLAB的附加产品,它提供了一个可视化的环境用于模拟动态系统,并能够帮助设计、仿真和分析各种复杂的控制算法。在110kV智能电网继电保护系统的设计中,Simulink被用来模拟电网中的各种继电保护设备和它们的动作逻辑,从而在仿真环境中验证保护策略的有效性,确保实际应用的安全性和可靠性。 设计和实现一个基于Simulink的110kV继电保护系统,涉及的关键技术实现包括:模型构建、保护装置的配置、故障检测、保护策略的选择与调整、以及系统的动态仿真等。这些技术的实现能够确保在发生短路、过载、接地故障等异常情况下,保护系统能够迅速且准确地响应,从而最大限度地减少停电时间,保障电力系统的连续性和稳定性。 保护装置配置是继电保护系统设计的核心环节,涉及了选择合适的继电器、断路器等硬件设备,并为它们配置适当的保护特性。保护策略的选择需要根据电网的结构、运行方式以及设备的特性来综合考虑,既要保证保护动作的灵敏度和选择性,又要避免保护系统的误动和拒动。 在Simulink中实现继电保护的设计,首先需要根据实际电网的参数和结构,构建出精确的电网模型。随后,将保护装置模型集成到电网模型中,对保护装置进行配置和参数化。之后,通过构建各种故障场景,进行大量的仿真测试,以检验保护策略的有效性和系统对不同故障的响应速度。仿真测试不仅能够帮助发现设计中的问题,还能够对保护策略进行优化和调整。 此外,安全性保障在继电保护系统的设计中也是至关重要的。安全性保障不仅仅是技术问题,还涉及管理、法规、标准等多个方面。在设计阶段,需要充分考虑这些因素,并在设计中予以体现,以确保系统在实际运行中能够达到预期的安全性水平。 基于Simulink平台的110kV智能电网继电保护设计与实现,是一种综合了电网模型构建、保护装置配置、故障模拟、策略优化和安全性保障的复杂系统工程。通过这种方式,可以显著提高电网的安全稳定性,为用户提供高效、稳定、可靠的电力保障方案。
2025-04-29 17:49:42 369KB
1
在高速数字产品的设计中,电源完整性(Power Integrity, PI)是一个至关重要的因素,它直接关系到产品的性能和可靠性。PDN(Power Delivery Network,电源分配网络)的设计旨在确保高速数字电路在工作时能持续获得稳定的电源供应,从而保证系统的鲁棒性和效率。本文将深入探讨PDN设计在电源完整性中的关键要素和实施策略。 电源完整性是指电路在受到电源干扰时仍能保持稳定运行的能力。这包括电压波动、噪声抑制、以及电流供应的连续性。在高速数字电路中,由于开关频率的不断提高,电源和地线上的噪声和干扰对电路的影响尤为显著,因此电源完整性成为了设计中的一个重点。 PDN设计的核心目标是在电路板上构建一个高效的电流传输路径,以满足高速元件对电源和信号完整性的需求。PDN包括了一系列的层面,从主电源层到元件的电源引脚,构成了一个复杂的网络。为实现有效的电源供应,PDN设计必须考虑以下几个关键要素: 1. 电源层和地层的布局:在多层PCB设计中,电源层和地层的布局直接影响到PDN的性能。它们需要尽量宽敞,以减少阻抗并提高电流的传输效率。同时,应该避免尖锐的转角,使用较宽的走线,确保电流分布均匀。 2. 去耦电容的布置:去耦电容是改善PDN性能的重要组件。它们能够提供局部的储能,减小电源层与地层之间的阻抗,从而抑制高频噪声。去耦电容的布置需要根据芯片的功率需求、开关频率以及负载电流的特性来选择合适的电容值和数量,并将其尽可能靠近IC引脚放置。 3. 电源和地平面的分割:在设计中,为了避免信号之间的串扰,需要对电源和地平面进行合理分割。但分割时也要注意,避免形成大的环形路径,因为这会产生较大的电磁干扰(EMI)。 4. 高频效应的考量:随着数字信号频率的提高,高频效应如趋肤效应和邻近效应开始变得不可忽略。这要求在PDN设计中使用更细的走线、更厚的铜层或采用多层堆叠的方法来减少高频损耗。 5. 信号完整性和电源完整性的协同设计:高速数字电路设计中,信号完整性和电源完整性是相互影响的。设计师需要同时关注这两方面,确保系统整体的稳定性和性能。 PDN设计是实现高速数字产品电源完整性的关键所在。良好的PDN设计可以有效减少电源噪声,提高系统稳定性和工作效率。设计师必须仔细规划电源层、地层的布局,合理布置去耦电容,并考虑到高频效应和信号、电源完整性的协同工作,才能确保最终产品的鲁棒性和高效性。
2025-04-25 16:37:19 186.6MB
1