自动驾驶技术入门书籍系列一:清华大学著作
2024-08-14 15:16:24 94.58MB 自动驾驶
1
一款轻量而功能强大的点云可视化和编辑软件,支持pcd, ply, las等多种格式,轻松打开海量点云数据,支持多方式多字段渲染点云,对点进行方便的查询、量测和编辑,提供了地面滤波算法,可应用于测绘、高精地图、SLAM等领域。
2024-08-09 14:50:25 17.13MB 可视化 PointCloud 自动驾驶
1
在自动驾驶领域,360环视全景拼接技术是一项至关重要的功能,它为车辆提供了全方位的视觉感知,有助于提升行车安全。"360环视全景拼接demo,c++程序"是一个展示如何实现这一技术的代码示例,主要用于帮助开发者理解和实践相关算法。 我们来探讨360环视全景拼接的基本概念。这项技术通过安装在车辆四周的多个摄像头捕捉图像,然后利用图像处理和计算机视觉算法将这些图像进行校正、拼接,形成一个无缝的鸟瞰图。这样,驾驶员可以清晰地看到车辆周围的环境,包括盲区,有效减少碰撞风险。 在这个"C++程序"中,我们可以预期包含以下几个关键部分: 1. **摄像头校正**:由于摄像头安装位置、角度和畸变的影响,捕获的图像需要先进行校正。这通常涉及到鱼眼镜头校正,通过霍夫变换等方法消除镜头引起的非线性失真。 2. **图像配准**:将不同摄像头捕获的图像对齐,确保在同一个坐标系下。这一步可能涉及到特征点匹配、刚性变换估计等技术。 3. **图像拼接**:使用图像融合算法,如权重平均或基于内容的融合,将校正后的图像无缝拼接成全景图。这一步要求处理好图像间的过渡区域,避免出现明显的接缝。 4. **实时处理**:在自动驾驶环境中,360环视系统必须实时工作,因此代码会优化算法以满足实时性需求,可能涉及多线程、GPU加速等技术。 5. **用户界面**:展示全景图像的界面设计,包括交互方式、视角切换、显示质量等,对于用户体验至关重要。 6. **标定过程**:摄像头的内在参数(如焦距、主点坐标)和外在参数(如安装位置、角度)的标定,是确保图像拼接准确的基础。 这个"AdasSourrondView-main"可能是项目的主要源代码目录,里面可能包含了上述各个模块的实现,以及相关的配置文件和测试数据。开发者可以通过阅读源码、编译运行,理解并学习360环视全景拼接的完整流程。 在实际应用中,除了基本的图像处理技术,360环视系统还可能整合深度学习算法,用于目标检测、障碍物识别等高级功能,以提供更全面的驾驶辅助。同时,为了应对各种复杂的环境条件,如光照变化、雨雪天气等,系统还需要具备一定的鲁棒性。 "360环视全景拼接demo,c++程序"是一个宝贵的教育资源,它揭示了自动驾驶领域中360度视觉感知的核心技术,并提供了一个动手实践的平台。通过深入研究这个示例,开发者可以增强自己在自动驾驶辅助系统(AVM)领域的专业能力。
2024-08-02 16:44:22 12.24MB 自动驾驶
1
一种应用于多车队列控制的分布式模型预测控制算法,该算法能够有效地协调三辆车的行驶,以实现车队的高效和安全行驶。文中详细阐述了算法的原理、实现步骤以及在实际场景中的应用效果。适用于对自动驾驶技术和车辆控制系统感兴趣的工程师、研究人员和学生。使用场景包括但不限于自动驾驶车辆的研发、智能交通系统的构建以及车辆控制算法的教学和研究。目标是提供一个有效的解决方案,以提高多车队列在复杂交通环境中的稳定性和协同性。 关键词标签:分布式控制 模型预测控制 多车队列 自动驾驶
1
《驾驶视频数据集 BDD100K:自动驾驶与图像识别技术的重要里程碑》 BDD100K,全称为Berkeley DeepDrive 100K,是一个极具影响力的驾驶视频数据集,它由10万个高质量的行车视频组成,旨在推动图像识别技术在自动驾驶领域的深入研究和发展。这一数据集不仅在规模上给人留下深刻印象,更在于其丰富的多样性和多任务设置,为研究人员提供了广泛而详尽的实验场景。 让我们深入了解BDD100K的核心特征。这个数据集的独特之处在于它的地理覆盖范围广泛,包含了来自美国各地的不同城市和乡村道路的视频。这样的设计确保了模型在训练过程中能够接触到各种复杂的地理环境,从而提高其在真实世界中的泛化能力。此外,BDD100K涵盖了多种不同的环境条件,如白天、夜晚、黄昏,以及晴天、阴天、雨天等不同天气状况,这为开发适应各种气候条件的自动驾驶算法提供了宝贵的资源。 数据集的多样性还体现在时间维度上,视频片段跨越了一年的时间,捕捉到了季节变化带来的视觉差异。这种时间上的连续性有助于模型学习到随时间变化的环境特征,进一步提升自动驾驶系统的智能水平。 BDD100K的另一个亮点是其设定的10个任务。这些任务包括了目标检测(如车辆、行人、交通标志等)、语义分割、车道线检测、昼夜分类、天气分类等关键问题。通过解决这些任务,研究人员可以全面评估算法在理解和处理驾驶场景中的各项能力。这些多任务的设置使得BDD100K成为了一个全面评估自动驾驶算法性能的平台,推动了相关领域的技术进步。 在实际应用中,BDD100K的数据被广泛用于训练深度学习模型,如卷积神经网络(CNN)和循环神经网络(RNN),以实现更精准的物体检测和行为预测。同时,它也为强化学习算法提供了一个理想的测试环境,帮助系统学习如何在复杂环境中做出正确的决策。 为了方便研究,BDD100K的数据集被精心组织和标注,每个视频片段都配有详细的元数据,包括时间戳、GPS坐标、相机视角等信息。这样的标注为后续的分析和实验提供了便利,使得研究人员能够更准确地理解模型的表现和改进空间。 BDD100K数据集为自动驾驶研究带来了革命性的变化,它的出现不仅推动了图像识别技术的进步,还促进了跨学科的合作,将计算机视觉、机器学习和自动驾驶紧密联系在一起。随着更多的研究者参与到这个数据集的探索中,我们有理由相信,未来的自动驾驶技术将变得更加安全、智能,为我们的出行带来前所未有的体验。
2024-08-01 16:05:53 97.67MB 数据集
1
matlab余玄函数代码规划知悉的轨迹预测(PiP) 正式实施“”(ECCV 2020), 由,,和。 在新颖的计划-预测-耦合管道中,将自我车辆的计划告知多主体未来的预测。 有关更多详细信息,请参阅我们的/ /。 依存关系 conda create -n PIPrediction python=3.7 source activate PIPrediction conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch conda install tensorboard=1.14.0 conda install numpy=1.16 scipy=1.4 h5py=2.10 future 下载 原始数据集:下载,然后使用预处理将其处理为所需格式(.mat)。 处理后的数据集:从此处下载并将其保存在datasets /中。 训练有素的模型:从这里下载并保存在trained_models /中。 跑步 通过sh scripts/train.sh训练或运行 python train.py --name
2024-07-31 11:57:59 225KB 系统开源
1
在现代汽车技术中,辅助驾驶系统(ADAS)扮演着越来越重要的角色,旨在提升行车安全性和驾驶舒适性。其中,自适应巡航控制(Adaptive Cruise Control, ACC)是ADAS的一项核心功能,它允许车辆自动调整速度以保持与前方车辆的安全距离。而“弯道限速辅助”则是自适应巡航控制在复杂路况下的一个高级扩展,它专门针对弯道路段,以确保车辆在过弯时能够安全、稳定地行驶。 自适应巡航控制(ACC)的基本工作原理是通过雷达传感器或激光雷达持续监测与前方车辆的距离,并根据预设的跟车距离自动调整本车的行驶速度。系统通常有多个预设的跟车距离等级,驾驶员可以根据自身需求选择。当前车减速或加速时,ACC系统会相应调整本车的速度,甚至在必要时完全停止车辆,以避免碰撞。 弯道限速辅助(Curve Speed Assist, CSA)是ACC系统的一个智能补充,尤其在高速公路和乡间道路上的弯道行驶时非常有用。该功能基于高精度地图数据和车辆动态信息,如车辆的转向角、侧向加速度等,来预测即将进入的弯道的曲率。一旦检测到车辆即将进入弯道,系统会自动降低车速,以符合安全过弯的最高速度,这样可以防止因过快入弯导致的失控或者打滑。 CSA系统的工作流程大致如下:车辆的传感器和导航系统识别出前方的弯道;接着,系统分析弯道的半径和当前车速;然后,根据车辆的物理特性(如轮胎抓地力、车身稳定性等)计算出安全过弯速度;如果当前车速超过这个安全值,系统将逐步降低车速,使车辆在进入弯道时处于合适的速度。 除了提高行车安全,弯道限速辅助还有助于改善驾驶体验。在没有弯道限速辅助的情况下,驾驶员可能需要频繁地调整车速以应对变化的路况,这在长途驾驶中会增加疲劳感。而CSA系统可以自动处理这些细节,使驾驶员能够更加专注于道路状况,享受更轻松的驾驶旅程。 然而,任何辅助驾驶系统都不是万能的,驾驶员仍然需要时刻保持警觉并准备接管控制。尽管CSA和ACC能够显著减少因速度不当引起的事故,但在遇到未在地图上标注的障碍物或者极端天气条件时,人类驾驶员的判断仍然是不可或缺的。 辅助驾驶系统,尤其是结合了弯道限速辅助的自适应巡航控制,为现代驾驶提供了智能且安全的解决方案。随着技术的不断发展,我们期待这些系统在未来能够变得更加智能化,进一步提升道路安全和驾驶体验。
2024-07-03 17:10:21 679KB 辅助驾驶
1
智能网联汽车是车联网与智能汽车的交集,也是智能处理技术与高速网络通信技术的深度融合,国内初期的智能网联大多是基于V2X协同通信的智能交通应用,在美国,他们管它叫网联汽车,欧洲称之为协作式智能交通,日本叫网联驾驶,虽说法不一,但大体一致。
2024-06-25 15:06:30 16KB 自动驾驶
1
Dense 强化学习在自动驾驶安全验证中的应用 Dense 强化学习是一种基于人工智能的技术,旨在加速自动驾驶汽车的安全验证过程。传统的安全验证方法需要在自然istic驾驶环境中对自动驾驶汽车进行测试,这些测试需要大量的时间和经济投入。为了解决这个问题,研究人员开发了一种智能测试环境,使用基于 Dense 强化学习的背景代理来验证自动驾驶汽车的安全性能。 Dense 强化学习是一种基于深度强化学习的方法,通过编辑马尔科夫决策过程,删除非安全关键状态,重新连接关键状态,以便从自然istic驾驶数据中获取紧凑的信息。这种方法可以使神经网络从紧凑的信息中学习,实现了传统深度强化学习方法无法实现的任务。 在本研究中,研究人员使用 Dense 强化学习方法训练背景代理,来模拟自然istic驾驶环境中的安全关键事件。然后,他们使用高度自动化的测试车辆在高速公路和城市测试轨道上进行测试,结果表明,Dense 强化学习方法可以将评估过程加速多个数量级(10^3 到 10^5 倍)。 该方法的应用前景非常广阔,不仅可以用于自动驾驶汽车的安全验证,还可以用于其他安全关键的自动系统的测试和培训。随着自动驾驶技术的快速发展,我们正处于交通革命的前沿,这项技术将大大推动自动驾驶技术的发展。 知识点: 1. Dense 强化学习是一种基于深度强化学习的方法,用于加速自动驾驶汽车的安全验证过程。 2. 传统的安全验证方法需要在自然istic驾驶环境中对自动驾驶汽车进行测试,这些测试需要大量的时间和经济投入。 3. Dense 强化学习方法可以通过编辑马尔科夫决策过程,删除非安全关键状态,重新连接关键状态,以便从自然istic驾驶数据中获取紧凑的信息。 4. 该方法可以使神经网络从紧凑的信息中学习,实现了传统深度强化学习方法无法实现的任务。 5. 该方法可以用于自动驾驶汽车的安全验证,也可以用于其他安全关键的自动系统的测试和培训。 6. 该方法可以加速自动驾驶汽车的安全验证过程,达到多个数量级的加速效果。 7. 该方法的应用前景非常广阔,随着自动驾驶技术的快速发展,将大大推动自动驾驶技术的发展。 Dense 强化学习是一种基于人工智能的技术,旨在加速自动驾驶汽车的安全验证过程。其应用前景非常广阔,将大大推动自动驾驶技术的发展。
2024-06-24 10:34:58 3.19MB 自动驾驶仿真
1
首先,对面向高速公路自动驾驶决策的深度强化学习算法进行改进。分别 针对当前常用于自动驾驶决策的两种深度强化学习算法深度确定性策略梯度 (Deep Deterministic Policy Gradient,DDPG)和近端策略优化(Proximal Policy Optimization,PPO)进行改进,以使其更能满足高速公路自动驾驶场景 对于决策模块的要求。对于DDPG算法,本文对其进行针对性改进提出了基 于双评论家及优先回放机制的深度确定性策略梯度算法(Double Critic and Priority Experience Replay Deep Deterministic Policy Gradient,DCPER-DDPG)。 针对Q值过估计导致的驾驶策略效果下降问题,采用了双评论家网络进行优 化。针对演员网络更新时产生的时间差分误差导致算法模型不精准采用延迟更 新方法降低这一影响。针对DDPG算法中随机经验回放导致的采样样本效果 不符合预期和训练速度慢导致的算力和资源损耗,本文采用优先经验回放机制 对其进行改善。
2024-05-29 00:26:53 37.1MB 自动驾驶 强化学习 高速公路 决策规划
1