ISAR(逆合成孔径雷达)成像定标的整个流程,涵盖了仿真实验和实测成像两个方面。文中具体讲解了运动补偿、参数估计、散射点提取、横向定标以及sgp4模型的应用等多个关键步骤和技术细节。每一步骤都配有详细的代码解释和相关文献支持,帮助读者深入了解各个阶段的工作原理和技术难点。此外,还强调了在实际操作过程中可能遇到的问题及其解决方案。 适合人群:从事雷达技术研发的专业人士,尤其是那些希望深入了解ISAR成像原理及其应用的研究人员和技术专家。 使用场景及目标:适用于科研机构、高校实验室以及工业界中涉及雷达系统开发和优化的项目。主要目的是提高相关人员对于ISAR成像技术的理解水平,促进技术创新和发展。 其他说明:本文不仅提供了理论指导,还包括大量实用的代码片段和案例研究,有助于加速学习进程并增强动手能力。同时,文中提到的技术和方法可以应用于多种类型的雷达系统,具有广泛的适用性和参考价值。
2025-10-07 17:14:59 393KB
1
ISAR成像全方位定标代码集:仿真与实测、运动补偿至散射点提取,含sgp4模型,详细注释附文献,ISAR成像全方位定标代码集:仿真与实测、运动补偿等模块含注释与文献,所有ISAR成像定标代码打包 包括仿真和实测成像,运动补偿,参数估计,散射点提取,横向定标,sgp4模型等,皆有注释带文献 ,核心关键词:ISAR成像定标代码; 仿真实测成像; 运动补偿; 参数估计; 散射点提取; 横向定标; sgp4模型; 注释带文献。,全面整合ISAR成像定标代码包:仿真与实测成像处理,含运动补偿与参数估计详解
2025-10-02 14:47:57 926KB scss
1
内容概要:本文详细介绍了基于TSMC0.18um工艺的密勒补偿二级OTA运放电路设计。主要内容涵盖设计背景、参考文献、设计流程、具体电路模块(如差分对模块)、测试平台(Testbench)构建、关键参数选择(如补偿电容Cc和调零电阻Rz),以及流片前的蒙特卡洛分析。此外,还分享了许多实用经验和技巧,如偏置电路设计、AC仿真的注意事项、版图审美的重要性等。 适合人群:模拟集成电路设计领域的初学者和有一定基础的研发人员。 使用场景及目标:适用于希望深入了解运算放大器设计原理和技术细节的人群。通过学习本文,可以掌握密勒补偿二级OTA运放电路的具体设计方法,提高模拟集成电路设计的能力。 其他说明:文中提供的代码片段和实践经验有助于读者更好地理解和应用相关知识点。同时,推荐结合模集教材进行系统学习,以提升整体技术水平。
2025-09-30 13:12:12 1.05MB mongodb
1
基于Matlab的无线充电仿真:LCC谐振器与不同拓扑的磁耦合谐振无线电能传输系统解析与建模,无线充电仿真 simulink 磁耦合谐振 无线电能传输 MCR WPT lcc ss llc拓扑补偿 基于matlab 一共四套模型: 1.llc谐振器实现12 24V恒压输出 带调频闭环控制 附参考和讲解视频 2.lcc-s拓扑磁耦合谐振实现恒压输出 附设计过程和介绍 3.lcc-p拓扑磁耦合谐振实现恒流输出 附设计过程 4.s-s拓扑补偿 带原理分析,仿真搭建讲解和参考,可依据讲解自行修改参数建模 四套打包 ,关键词:无线充电仿真;Simulink;磁耦合谐振;无线电能传输(WPT);MCR;LLC谐振器;LCC-S拓扑;LCC-P拓扑;调频闭环控制;设计过程;恒压输出;恒流输出;s-s拓扑补偿;Matlab。,基于Matlab的无线充电仿真模型:多拓扑磁耦合谐振无线电能传输系统研究
2025-09-27 13:53:52 352KB 开发语言
1
提出一种标准CMOS工艺结构的低压、低功耗电压基准源,工作电压为5~10 V。利用饱和态MOS管的等效电阻特性,对PTAT基准电流进行动态电流反馈补偿,设计了一种输出电压为1.3 V的带隙基准电路。使输出基准电压温度系数在-25~+120℃范围的温度系数为7.427 ppm/℃,在27℃时电源电压抑制比达82 dB。该基准源的芯片版图面积为0.022 mm2,适用于低压差线性稳压器等领域。 《一种新型高精度CMOS带隙基准源的设计》 带隙基准源是模拟集成电路中的重要组成部分,它为系统提供一个稳定的电压参考,对于诸如数模转换器、模数转换器等电子设备的精度至关重要。本文章介绍了一种采用标准CMOS工艺的新型低压、低功耗电压基准源,其工作电压范围为5~10V,设计目标是实现1.3V的输出电压,同时具有优良的温度稳定性和电源电压抑制比。 该设计巧妙地利用了饱和态MOS管的等效电阻特性,对比例于绝对温度(PTAT)的基准电流进行动态电流反馈补偿。这一方法能够有效减少因温度变化导致的输出电压波动。在-25~+120℃的温度范围内,输出基准电压的温度系数仅为7.427 ppm/℃,意味着其对环境温度变化的敏感度极低,极大地提高了基准源的稳定性。 文章提到了在27℃时,电源电压抑制比高达82 dB,这表明该基准源对于电源电压的变化具有极高的免疫力,确保了在各种电源条件下的输出精度。此外,电路的芯片版图面积仅为0.022 mm2,这使得该设计非常适合在空间有限的低压差线性稳压器等应用场景中使用。 带隙基准源的基本原理在于通过组合正温度系数和负温度系数的电压,以抵消温度对输出电压的影响。负温度系数的电压主要来自双极晶体管的基极-发射极电压(VBE),而正温度系数的电压则通过不同电流密度下两个晶体管的基极-发射极电压差得到。通过精心设计,将这两部分电压加权相加,可以得到一个近似温度独立的基准电压。 文章提出的电路结构包含了带隙核心电路、反馈补偿电路和启动电路。带隙核心电路利用饱和状态MOS管复制基准电流,通过双极晶体管Q1和Q2的不同电流密度实现PTAT效应。反馈补偿电路则是对PTAT基准电流进行动态调整,以优化温度特性。启动电路则确保基准源在系统启动时能正确工作。 总体来说,该设计创新地利用CMOS工艺实现了高精度、低功耗的带隙基准源,优化了温度系数和电源电压抑制比,同时考虑了电路的小型化,为嵌入式系统和低电压应用提供了理想的解决方案。这一成果不仅提升了基准源的性能,也为未来集成电路设计提供了新的思路。
1
基于自抗扰控制的PMSM非奇异终端滑模控制:详细公式推导与稳定性分析,含1.5延时补偿设计方法,自抗扰控制下的PMSM非奇异终端滑模控制:详细公式推导与稳定性分析,含1.5延时补偿设计方法,基于自抗扰控制的非奇异终端滑模控制_pmsm 包含:详细公式推导以及终端滑模控制设计方法以及稳定性推导、1.5延时补偿。 ,基于自抗扰控制的非奇异终端滑模控制_pmsm; 详细公式推导; 终端滑模控制设计方法; 稳定性推导; 1.5延时补偿。,自抗扰控制下的PMSM非奇异终端滑模控制设计方法研究 在现代电力电子和自动控制领域,永磁同步电机(PMSM)因其高效率、高功率密度以及良好的控制性能而被广泛应用。在实际应用中,电机控制的稳定性与快速响应能力是影响系统性能的关键因素。自抗扰控制(ADRC)和非奇异终端滑模控制(NTSMC)作为两种先进的控制策略,在提高系统鲁棒性、减少对系统模型精确性的依赖方面展现了巨大潜力。本文旨在探讨基于自抗扰控制的PMSM非奇异终端滑模控制策略的详细公式推导、稳定性分析,以及1.5延时补偿设计方法。 自抗扰控制技术是一种能够有效应对系统外部扰动和内部参数变化的控制方法。它通过实时估计和补偿系统内外扰动来实现对系统动态行为的有效控制。在电机控制系统中,ADRC可以显著增强系统对负载变化、参数波动等不确定因素的适应能力,从而提高控制精度和鲁棒性。 非奇异终端滑模控制是一种新型的滑模控制技术,其核心在于设计一种非奇异滑模面,避免传统滑模控制中可能出现的“奇异点”,同时结合终端吸引项,使得系统状态在有限时间内收敛至平衡点。NTSMC具有快速、准确以及无需切换控制输入的优点,非常适合用于高性能电机控制系统。 在研究中,首先需要详细推导基于自抗扰控制的PMSM非奇异终端滑模控制的相关公式。这包括建立PMSM的数学模型,设计自抗扰控制器以补偿系统内外扰动,以及构造非奇异终端滑模控制律。在推导过程中,需要充分考虑电机的电磁特性、转动惯量以及阻尼效应等因素。 接下来,稳定性分析是控制策略设计的关键环节。通过李雅普诺夫稳定性理论,可以对控制系统的稳定性进行深入分析。通过选择合适的李雅普诺夫函数,证明在给定的控制律作用下,系统的状态能够收敛至平衡点,从而确保电机控制系统的稳定性。 1.5延时补偿设计方法是提高系统控制性能的重要环节。在电机控制系统中,由于信息处理、执行器动作等方面的延迟,系统中必然存在一定的时延。为了保证控制性能,需要在控制策略中引入延时补偿机制。通过精确估计系统延迟,并将其纳入控制律中,可以有效减少时延对系统性能的影响。 本文档中包含了多个以“基于自抗扰控制的非奇异终端滑模控制”为主题的文件,文件名称后缀表明了文件可能是Word文档、HTML网页或其他格式。从文件列表中可以看出,内容涵盖了详细公式推导、滑模控制设计方法、稳定性分析以及延时补偿设计方法等多个方面。此外,文档中还包含“应用一”、“应用二”等内容,表明了该控制策略在不同应用场合下的具体运用和实验研究。 基于自抗扰控制的PMSM非奇异终端滑模控制策略通过结合ADRC和NTSMC的优势,能够有效提升电机控制系统的稳定性和响应速度,减少对系统精确模型的依赖,并通过延时补偿设计提高控制性能。这项研究为高性能电机控制系统的开发提供了新的思路和方法。
2025-09-19 14:14:25 659KB edge
1
内容概要:本文详细介绍了雷达信号处理领域的运动补偿算法,重点讲解了两种包络对齐方法(相邻相关法和积累互相关法)和两种相位补偿方法(多普勒中心跟踪法和特显点法)。文中不仅解释了各方法的工作原理,还提供了相应的Matlab仿真代码示例。通过这些方法的应用,能够有效地消除目标平动运动对雷达成像的影响,提高成像准确性。此外,文章还展示了使用雅克42飞机实测数据进行运动补偿的效果,验证了算法的有效性。 适合人群:从事雷达信号处理的研究人员和技术人员,对运动补偿算法有兴趣的学习者。 使用场景及目标:适用于需要处理运动目标雷达信号的场合,如军事雷达、气象雷达等领域。主要目标是提高雷达成像质量,减少因目标运动带来的成像失真。 其他说明:文中提供的Matlab代码可以直接应用于实际项目中,但需要注意根据实际情况调整参数。同时,针对不同类型的雷达数据,可以选择合适的包络对齐和相位补偿方法组合,以达到最佳效果。
2025-09-18 19:44:04 136KB
1
内容概要:本文探讨了一种用于直流微电网中储能单元的SOC(荷电状态)均衡控制策略。由于不同容量的蓄电池存在自放电、环境温度等因素的影响,其SOC容易出现差异,这对微电网的运行效率和电池寿命有负面影响。为此,提出了分段下垂控制策略,通过调整下垂系数加速SOC均衡,并在SOC接近一致时进行模式切换,确保各储能单元的SOC趋于一致。此外,加入了母线电压补偿环节,以应对源荷功率差变化,使母线电压快速恢复并保持在额定值,提高了系统的稳定性和可靠性。 适合人群:从事电力系统、微电网研究和技术开发的专业人士,以及对储能技术和微电网感兴趣的科研人员。 使用场景及目标:适用于需要提升直流微电网运行效率和稳定性的场合,特别是涉及多容量蓄电池管理的项目。目标是通过有效的SOC均衡控制,延长蓄电池寿命,提高微电网的整体性能。 其他说明:该策略已在理论层面进行了详细阐述,未来还需在实际应用中进一步验证和优化,可能引入更多智能控制算法,如模糊控制、神经网络等,以实现更精细的控制。
2025-09-11 11:06:55 1.54MB
1
基于PMSM的考虑电流采样延时及一延时补偿的电机控制Simulink模型(含低通滤波器与死区模块),2018b版PMSM电机控制模型:考虑电流采样延时及多模块优化的离散化仿真系统,该模型为考虑电流采样延时的电机控制simulink模型。 模型架构为PMSM的传统双闭环(PI调节器)控制(版本2018b),模型中还包括以下模块: 1)考虑电流采样延时的中断触发模块 2)转速计算的低通滤波器 3)1.5延时补偿模块 4)死区模块 该模型特色为:考虑电流采样延时、考虑了转速计算的低通滤波器、控制系统的一延时,所以该模型能够尽可能去还原实际的电机控制。 系统已经完全离散化,与实验效果非常接近。 ,会将simulink仿真模型打包发送。 ,核心关键词:电流采样延时;PMSM;双闭环控制;PI调节器;低通滤波器;1.5延时补偿;死区模块;系统离散化。,Simulink电机控制模型(含延时补偿及低通滤波)
2025-09-10 17:18:24 4.6MB ajax
1
文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 你是否渴望高效解决复杂的数学计算、数据分析难题?MATLAB 就是你的得力助手!作为一款强大的技术计算软件,MATLAB 集数值分析、矩阵运算、信号处理等多功能于一身,广泛应用于工程、科学研究等众多领域。 其简洁直观的编程环境,让代码编写如同行云流水。丰富的函数库和工具箱,为你节省大量时间和精力。无论是新手入门,还是资深专家,都能借助 MATLAB 挖掘数据背后的价值,创新科技成果。别再犹豫,拥抱 MATLAB,开启你的科技探索之旅!
2025-09-08 16:28:18 5.42MB MATLAB
1