利用粒子群算法对电动汽车充电站进行选址和定容优化的方法。具体来说,作者结合了交通网络流量和道路权重,构建了一个基于IEEE33节点系统的耦合模型,并通过MATLAB实现了这一优化过程。文中不仅提供了关键的适应度函数和粒子群迭代公式的代码片段,还分享了一些实用的经验技巧,如参数调整、避免局部最优等问题。此外,作者指出高峰时段的交通热点并不一定是建设充电站的最佳位置,强调了耦合模型的重要性。 适合人群:从事智能交通系统、电力系统规划以及相关领域的研究人员和技术人员。 使用场景及目标:适用于需要解决电动汽车充电站布局问题的实际工程项目,旨在提高充电设施的效率和服务质量,同时降低建设和运营成本。 其他说明:附带的小功能可以生成动态负荷曲线图,有助于更好地展示不同的充电策略对电网的影响。整个模型运行时间约为15分钟,推荐将种群数量设定为30-50。
2025-10-23 14:56:42 393KB 粒子群算法 MATLAB 电力系统
1
利用MATLAB粒子群算法求解电动汽车充电站选址定容问题:结合交通流量与道路权重,IEEE33节点系统模型下的规划方案优化实现,基于粒子群算法的Matlab电动汽车充电站选址与定容规划方案,电动汽车充电站 选址定容matlab 工具:matlab 内容摘要:采用粒子群算法,结合交通网络流量和道路权重,求解IEEE33节点系统与道路耦合系统模型,得到最终充电站规划方案,包括选址和定容,程序运行可靠 ,选址定容; 粒子群算法; 交通网络流量; 道路权重; 充电站规划方案; IEEE33节点系统; 道路耦合模型; MATLAB程序。,Matlab在电动汽车充电站选址定容的优化应用
2025-10-19 18:01:50 1017KB 柔性数组
1
内容概要:本文探讨了利用粒子群算法对城市电动汽车充电站和分布式光伏进行选址定容优化的方法。首先,通过地理信息系统(GIS)数据和两步筛选法确定候选站点,即先排除地形复杂区域,再依据服务半径选择合适的地点。其次,建立了综合考虑建设成本、运行维护费、车主绕路损失及电网损耗加碳排放的成本模型,并通过粒子群算法求解最优解。实验结果显示,在某新区规划中,传统方法需要3小时的计算被压缩到18分钟,显著提高了计算效率。 适合人群:从事电力系统规划、智能交通系统设计的研究人员和技术人员,以及对优化算法感兴趣的学者。 使用场景及目标:适用于城市规划部门在制定电动汽车基础设施布局方案时参考,帮助决策者科学合理地选择充电站的位置和规模,降低建设和运营成本,提升用户体验。 其他说明:文中提供的MATLAB代码片段展示了具体的实现细节,但实际应用还需结合当地政策法规和其他非技术因素考量。
2025-10-19 17:57:01 241KB
1
内容概要:本文探讨了电动汽车充电站选址定容问题,采用MATLAB中的粒子群算法,结合交通网络流量和道路权重,求解IEEE33节点系统与道路耦合模型,从而得出可靠的充电站规划方案。首先介绍了粒子群算法的基本概念及其在优化问题中的应用,然后详细描述了模型的构建方法,包括交通网络模型和道路耦合系统模型。接着阐述了MATLAB工具的应用过程,展示了如何使用粒子群算法工具箱进行求解。最后通过迭代和优化,得到了满足特定条件下的最优充电站规划方案,确保了程序的可靠性和实用性。 适用人群:从事电力系统规划、交通工程以及相关领域的研究人员和技术人员。 使用场景及目标:适用于需要解决电动汽车充电站选址定容问题的实际工程项目,旨在提高充电设施布局合理性,增强电网稳定性。 其他说明:文中提供的方法不仅限于理论研究,还能够直接应用于实际项目中,为充电站建设提供科学依据和技术支持。
2025-10-19 17:47:28 522KB
1
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-10-18 15:46:50 3.05MB matlab
1
Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-10-16 20:38:58 11.34MB matlab
1
内容概要:本文详细介绍了如何利用Python实现综合能源负荷预测和微电网优化调度。首先,通过随机森林算法对历史数据进行处理,提取关键特征并构建负荷预测模型,特别强调了时间特征工程的重要性。接着,引入粒子群算法(PSO)用于优化微电网调度方案,具体展示了如何设置粒子群参数、定义成本函数以及实现功率平衡约束。实验结果显示,该方法能够有效降低用能成本约18.7%,并在实际应用中提供了灵活性和扩展性。 适合人群:对综合能源系统、负荷预测及优化调度感兴趣的科研人员和技术开发者。 使用场景及目标:适用于需要进行能源管理和优化的企业或研究机构,旨在提高能源利用效率,降低成本。通过学习本文提供的方法,可以掌握从数据预处理到模型建立再到优化调度的完整流程。 其他说明:建议初学者先使用公开数据集练习,熟悉整个流程后再应用于真实项目中。文中提到的技术细节如特征工程、PSO参数调整等对于获得良好效果至关重要。
2025-09-27 15:50:41 13.89MB
1
内容概要:本文详细探讨了利用改进粒子群算法(PSO)进行微电网综合能源优化调度的方法。首先介绍了微电网的概念及其优化调度的重要性,然后建立了包含可再生能源、储能系统和常规能源在内的优化模型,优化目标涵盖经济性和环保性。接着,针对传统PSO算法存在的局限性,提出了引入自适应惯性权重、动态调整加速因子以及混合变异操作的改进措施。文中还提供了Python代码实现,展示了改进算法的具体步骤,并通过实验验证了其优越性。结果显示,改进后的PSO算法在收敛速度和解质量方面均有显著提升。 适合人群:从事微电网研究、智能优化算法开发的研究人员和技术人员,尤其是对粒子群算法有一定了解并希望应用于实际工程问题的人士。 使用场景及目标:适用于需要对微电网进行高效、经济且环保的能源调度的场合,旨在通过改进的粒子群算法实现快速收敛和高质量的优化解,从而降低成本并减少环境污染。 其他说明:本文不仅提供了理论分析,还包括详细的代码实现,有助于读者更好地理解和应用所提出的改进算法。此外,文中提到的改进策略对于其他类似优化问题也具有一定的借鉴意义。
2025-09-27 15:42:00 4.99MB
1
内容概要:本文详细介绍了如何使用Matlab实现多目标粒子群算法对含有风力发电、光伏发电、柴油发电机和储能系统的微电网进行优化。文章首先构建了微电网的模型,定义了各个组件的关键参数,如风力发电机的功率曲线、光伏发电的效率等。接着明确了优化目标,即运行成本最低和风光消纳最大化。文中展示了具体的数学表达式和Matlab代码片段,用于计算运行成本和风光消纳率,并讨论了粒子群算法的具体实现,包括参数设置、粒子位置更新规则及其约束条件。此外,文章还提到了一些工程实践中需要注意的问题,如风光出力预测的数据时间和约束处理方法。 适合人群:从事电力系统研究、微电网优化设计的研究人员和技术人员,尤其是那些希望深入了解多目标粒子群算法在微电网优化中应用的人士。 使用场景及目标:适用于需要优化微电网运行成本和提高风光消纳率的实际工程项目。通过多目标粒子群算法的应用,可以在不同的运行条件下找到最佳的资源配置方案,从而实现经济效益和环境效益的最大化。 其他说明:文章强调了模型精度对优化效果的影响,并指出了一些常见错误和改进措施。例如,风光出力预测数据的时间分辨率对优化结果有显著影响,合理的参数设置能够提升算法性能。
2025-08-27 09:57:49 1.84MB
1
本文探讨了蚁群算法在自动化立体仓库拣选路径优化中的应用,旨在解决现有自动化立体仓库在优化管理和调度方面的不足。自动化立体仓库是现代企业物流系统中不可或缺的组成部分,其特点在于高效的空间利用率、快速的货物存取作业以及机械化、自动化的仓库操作。尽管其硬件设备、自动控制和通讯技术已经十分完善,但如何提高仓库的工作效率,尤其是在不增加额外设备投资的前提下,优化拣选路径成为了一个亟待解决的问题。 蚁群算法是一种模拟自然界蚂蚁觅食行为的启发式算法,它通过模拟蚂蚁在寻找食物路径过程中释放的信息素来实现对最短路径的搜索。算法中的蚂蚁个体在选择路径时会考虑信息素的浓度和路径的可见度。在蚁群算法中,每个路径上的信息素浓度会根据路径的好坏而进行相应的更新。通过不断地迭代搜索,算法最终能够寻找到接近最优解的路径。 文章中首先对自动化立体仓库的概念和特点进行了介绍,指出了其在存储量大、占地面积小、操作时间短、机械化自动化等方面的优势。同时,文章分析了自动化立体仓库在优化管理、调度方面所面临的挑战,并强调了优化拣选路径的重要性。 随后,文章详细介绍了蚁群算法的基本原理和数学模型,包括路径选择的随机转移概率公式、信息素的局部更新和全局更新机制。信息素局部更新机制确保蚂蚁在城市间转移时,能够根据路径信息素的浓度来调整转移概率,而全局更新机制则是在所有蚂蚁完成一次搜索后,仅对路径最短的蚂蚁留下的信息素进行加强。这种局部和全局信息素更新机制结合的方式,有利于算法更快地收敛至最优解。 在本文的研究中,蚁群算法被应用于固定货架堆垛机拣选路径的优化问题。利用Matlab软件编程求解堆垛机拣选货物的旅行商问题(TSP),并将蚁群算法应用于该问题中,以期找到最短的拣选路径。通过实验分析,蚁群算法相较于其他优化方法在自动化立体仓库拣选路径优化方面具有更高的效率和更好的应用前景。 蚁群算法在自动化立体仓库拣选路径优化中的应用,不仅能够提升拣选作业的效率和准确性,还能有效降低运营成本。通过将这一算法与自动化立体仓库的实际工作相结合,可以为仓库管理提供科学、高效的决策支持。未来,随着算法本身的进一步优化和硬件技术的不断发展,蚁群算法在自动化立体仓库中的应用前景将会更加广阔。
2025-08-04 01:12:35 225KB 首发论文
1