机器学习/数据挖掘岗面试准备

上传者: bryan__ | 上传时间: 2019-12-21 18:48:20 | 文件大小: 16.62MB | 文件类型: rar
参加各大公司面试时准备的复习资料,已经拿到百度,腾讯,华为offer

文件下载

资源详情

[{"title":"( 56 个子文件 16.62MB ) 机器学习/数据挖掘岗面试准备","children":[{"title":"数据挖掘面试准备 - BRYAN出品","children":[{"title":"性价比-.txt <span style='color:#111;'> 1.97KB </span>","children":null,"spread":false},{"title":"L1-L2.pdf <span style='color:#111;'> 469.51KB </span>","children":null,"spread":false},{"title":"微软面试100题.txt <span style='color:#111;'> 53B </span>","children":null,"spread":false},{"title":"穿衣搭配.txt <span style='color:#111;'> 588B </span>","children":null,"spread":false},{"title":"菜鸟需求预测与分仓规划.txt <span style='color:#111;'> 692B </span>","children":null,"spread":false},{"title":"支持向量机(林轩田)","children":[{"title":"205_handout.pdf <span style='color:#111;'> 560.84KB </span>","children":null,"spread":false},{"title":"203_handout.pdf <span style='color:#111;'> 1.17MB </span>","children":null,"spread":false},{"title":"201_handout.pdf <span style='color:#111;'> 1.18MB </span>","children":null,"spread":false},{"title":"204_handout.pdf <span style='color:#111;'> 1.99MB </span>","children":null,"spread":false},{"title":"202_handout.pdf <span style='color:#111;'> 578.55KB </span>","children":null,"spread":false},{"title":"206_handout.pdf <span style='color:#111;'> 752.20KB </span>","children":null,"spread":false}],"spread":true},{"title":"xgboost复习和调参.txt <span style='color:#111;'> 198B </span>","children":null,"spread":false},{"title":"阿里音乐.txt <span style='color:#111;'> 900B </span>","children":null,"spread":false},{"title":"人品预测.txt <span style='color:#111;'> 614B </span>","children":null,"spread":false},{"title":"风控算法.txt <span style='color:#111;'> 555B </span>","children":null,"spread":false},{"title":"性价比.txt <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"Boosting.pdf <span style='color:#111;'> 428.22KB </span>","children":null,"spread":false},{"title":"常用算法","children":[{"title":"FFM.txt <span style='color:#111;'> 102B </span>","children":null,"spread":false},{"title":"xgboost.pdf <span style='color:#111;'> 922.29KB </span>","children":null,"spread":false},{"title":"KNN与KD树.txt <span style='color:#111;'> 360B </span>","children":null,"spread":false},{"title":"支持向量机通俗导论(理解SVM的三层境界)LaTeX最新版_2015.1.9.pdf <span style='color:#111;'> 1.44MB </span>","children":null,"spread":false},{"title":"LR.txt <span style='color:#111;'> 402B </span>","children":null,"spread":false},{"title":"adaboost.txt <span style='color:#111;'> 358B </span>","children":null,"spread":false},{"title":"SVM.txt <span style='color:#111;'> 843B </span>","children":null,"spread":false},{"title":"SVM.docx <span style='color:#111;'> 1.51MB </span>","children":null,"spread":false},{"title":"线性回归最小二乘推导.pdf <span style='color:#111;'> 609.61KB </span>","children":null,"spread":false},{"title":"线性回归推导.docx <span style='color:#111;'> 1.02MB </span>","children":null,"spread":false},{"title":"gbdt.pdf <span style='color:#111;'> 1.29MB </span>","children":null,"spread":false},{"title":"HMM.txt <span style='color:#111;'> 369B </span>","children":null,"spread":false},{"title":"贝叶斯.txt <span style='color:#111;'> 80B </span>","children":null,"spread":false},{"title":"BoostedTree.pdf <span style='color:#111;'> 1.31MB </span>","children":null,"spread":false},{"title":"blending and bagging.txt <span style='color:#111;'> 53B </span>","children":null,"spread":false},{"title":"SVD.txt <span style='color:#111;'> 136B </span>","children":null,"spread":false},{"title":"推荐算法.txt <span style='color:#111;'> 146B </span>","children":null,"spread":false},{"title":"RF.jpg <span style='color:#111;'> 44.39KB </span>","children":null,"spread":false},{"title":"线性回归推导.pdf <span style='color:#111;'> 487.36KB </span>","children":null,"spread":false},{"title":"LR_intro.pdf <span style='color:#111;'> 999.62KB </span>","children":null,"spread":false},{"title":"gbdt.txt <span style='color:#111;'> 56B </span>","children":null,"spread":false},{"title":"word2vec.txt <span style='color:#111;'> 111B </span>","children":null,"spread":false},{"title":"RF_bootstrap.png <span style='color:#111;'> 4.85KB </span>","children":null,"spread":false},{"title":"page rank.txt <span style='color:#111;'> 30B </span>","children":null,"spread":false},{"title":"rf.txt <span style='color:#111;'> 139B </span>","children":null,"spread":false},{"title":"决策树.txt <span style='color:#111;'> 174B </span>","children":null,"spread":false},{"title":"常见面试算法.pdf <span style='color:#111;'> 1004.63KB </span>","children":null,"spread":false},{"title":"常见面试算法.docx <span style='color:#111;'> 991.67KB </span>","children":null,"spread":false}],"spread":false},{"title":"vc维.txt <span style='color:#111;'> 654B </span>","children":null,"spread":false},{"title":"流量异常检测.txt <span style='color:#111;'> 638B </span>","children":null,"spread":false},{"title":"错题集合.txt <span style='color:#111;'> 3.27KB </span>","children":null,"spread":false},{"title":"海量数据中位数.txt <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"过拟合.txt <span style='color:#111;'> 283B </span>","children":null,"spread":false},{"title":"t检验卡方检验.txt <span style='color:#111;'> 242B </span>","children":null,"spread":false},{"title":"梯度下降.txt <span style='color:#111;'> 54B </span>","children":null,"spread":false},{"title":"编程-》剑指offer.txt <span style='color:#111;'> 74B </span>","children":null,"spread":false},{"title":"模型稳定性.txt <span style='color:#111;'> 36B </span>","children":null,"spread":false},{"title":"机器学习面试相关问题.txt <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"深度学习.txt <span style='color:#111;'> 37B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

  • Chousdow :
    值得认真学习
    2020-04-15
  • 周筱筱 :
    可以的。。。。。
    2019-05-06
  • AlexPan :
    期望太大。用处不足。算法的话,看林轩田的视频有。还得自己补其他知识。这点完全不够
    2019-02-02
  • mbeacon :
    内容还行,就是有些乱码
    2018-07-18
  • m0_37713661 :
    值得认真学习
    2018-06-28

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明