内容概要:本文详细介绍了如何基于51单片机(如STC89C52)利用PID算法实现电机转速的精确控制。主要内容包括硬件准备、程序代码解析、PID算法的具体实现及其参数调整方法。通过按键设置期望转速,使用定时器和外部中断检测实际转速,并通过PID算法调整电机控制信号,使得实际转速接近设定值。此外,还展示了如何在Proteus中进行硬件仿真,验证系统的正确性和稳定性。 适用人群:适用于具有一定嵌入式系统基础知识的学习者和技术人员,特别是对51单片机和PID控制感兴趣的开发者。 使用场景及目标:本项目的目的是帮助读者掌握51单片机的基本外设使用方法,理解PID算法的工作原理及其在实际工程项目中的应用。通过动手实践,读者可以构建一个完整的电机控制系统,提高对嵌入式系统的理解和应用能力。 其他说明:文中提供了详细的代码片段和调试技巧,有助于初学者逐步理解和实现整个系统。同时,针对常见的调试问题给出了相应的解决方案,如PID参数调整、脉冲计数同步等问题。
2025-04-28 18:26:39 123KB
1
MATLAB程序:图片与视频火焰检测系统——精确跟踪火焰区域框选,基于MATLAB的程序:图片与视频火焰检测系统——自动追踪火焰区域框选,图片视频火焰检测MATLAB程序 有两个一个可以图片火焰检测。 一个可以对视频进行火焰检测。 视频的素材是用的网上的素材,可以成你自己的视频。 会跟踪火焰的区域框选。 本全网无重复。 经过多次测试,保证能够成功运行。 程序自带多张图片和两个视频。 ,图片视频火焰检测; MATLAB程序; 火焰区域框选; 程序测试成功; 自带素材,标题:火焰检测MATLAB程序,支持图片与视频处理,带区域跟踪功能,测试成功,含多例样图与视频。
2025-04-10 17:45:06 10.85MB kind
1
选用M 12 Timing Oncore Receiver GPS模块、Cyclone Ⅱ系列EP2C8现场可编程逻辑门阵列(FPGA)、10MHz高精度恒温晶振等设计硬件电路,实现GPS时钟在失步情况下精确对时。由GPS模块接收GPS卫星授时信号,输出秒脉冲和GPS时标至FPGA,同时恒温晶振10MHz脉冲信号输至FPGA,经FPGA处理后的秒脉冲信号和GPS时标信息通过驱动电路并行送到串口或光纤模块。软件分成秒脉冲上升沿判别、10MHz晶振脉冲计数、GPS失步情况下秒脉冲生成、GPS时标接收/发送4个功能模块,用VHDL语言对各软件模块进行功能开发,并给出了程序清单。仿真和试验结果表明,该方法可保证GPS时钟在失步12h内秒脉冲误差小于50μs。
2025-04-01 16:57:51 830KB
1
"PMSM永磁同步电机参数辨识仿真研究:定子电阻与dq轴电感、永磁磁链及转动惯量的精确辨识方法",PMSM永磁同步电机参数辨识仿真,适用于表贴式永磁同步电机: 辨识内容:定子电阻,dq轴电感,永磁磁链,转动惯量。 ,PMSM永磁同步电机; 参数辨识仿真; 定子电阻; dq轴电感; 永磁磁链; 转动惯量,"PMSM仿真:参数辨识表贴式永磁同步电机"
2025-03-27 14:52:02 710KB xbox
1
ORB-SLAM是一个精确的多功能单目SLAM系统,它的全称是ORB-SLAM: A Versatile and Accurate Monocular SLAM System,其研发者是Taylor Guo,发布于2015年的《IEEE Transactions on Robotics》。单目SLAM指的是使用单个相机进行同时定位与建图的技术,而ORB-SLAM是其中的一个开创性工作,它具有处理剧烈运动图像的能力,并可自动处理闭环控制、重定位、甚至全自动位置初始化。 SLAM系统主要分为单目SLAM和多目SLAM,其中单目SLAM仅使用单个相机作为传感器输入,难度较高,因为单个视角的信息有限,但它的应用场景更加广泛。而ORB-SLAM正是在单目SLAM领域的重大突破。它在各种场合,无论是室内的小场景还是室外的大场景,都显示出强大的鲁棒性。 系统架构方面,ORB-SLAM具有三个主要功能模块,包括特征提取、追踪、局部地图构建和闭环控制,这三个模块通过三个线程并行运行,它们分别是:追踪线程、局部地图构建线程和闭环控制线程。特征提取使用的是ORB特征,它是一种旋转不变的特征,即使在没有GPU的情况下也能够实现实时的图像处理。 关于系统的关键创新点,其一是在于对所有任务使用相同的ORB特征进行追踪、地图构建、重定位和闭环控制,这样系统效率高、稳定可靠。ORB-SLAM可以进行实时的全局优化处理,包括位置地图和闭环回路。它还采用了一种基于位置优化的实时闭环控制,称为Essential Graph,该图通过生成树构建,包含了系统、闭环控制链接和视图内容关联强边缘。 此外,ORB-SLAM还包含全自动地图初始化,这意味着它可以在没有人工干预的情况下,自动开始地图构建过程。在初始化地图的过程中,ORB-SLAM能够选择不同的模型创建平面或者非平面的初始化地图,并且这个过程是自动的,具有良好的鲁棒性。 在地图构建方面,ORB-SLAM使用了云点(地图点)和关键帧(关键图像帧)技术,它们在地图重构中起到了重要的作用。通过严格的筛选,去除冗余的关键帧,系统能够增强追踪的鲁棒性,并提高程序的操作性。 ORB-SLAM还具备实时相机重定位功能,具备良好的旋转不变特性。即使在追踪失败后,系统也可以重新进行定位,且地图能够被重复使用。此外,ORB-SLAM能够处理大量地图云点和关键帧,并通过合适的方法进行挑选,以优化地图的质量。 在实验方面,ORB-SLAM在多个图像数据集上进行了测试,包括New College、TUMRGB-D和KITTI等,表现出了其精度和性能优势。相比于其他最新的单目SLAM系统,ORB-SLAM的性能优势是显而易见的。 ORB-SLAM的结论和讨论部分提到,它基于离散/特征方法与稠密/直接方法对比,并指出了后续工作的方向。论文还包含了一个附录,介绍非线性优化和捆集调整等内容,并列出了参考文献。 ORB-SLAM是一个功能全面、具有创新性的单目SLAM系统,它的出现极大地推动了单目视觉SLAM技术的发展,使其在实时性和准确性方面都达到了新的高度。它为未来研究提供了宝贵的经验和启示,尤其在处理复杂场景以及优化系统性能方面,为SLAM技术的发展奠定了重要的基础。
2024-08-30 13:43:19 2.01MB 单目SLAM
1
UTM2LL将通用横向墨卡托(UTM)的东/北坐标转换为纬度/经度。 LL2UTM 将纬度/经度坐标转换为 UTM。 这两个函数都使用精确公式(毫米精度)、可能的用户定义数据(WGS84 是默认值),并且都是矢量化的(代码中没有循环)。 这意味着巨大的点矩阵,就像整个 DEM 网格,可以非常快速地转换。 示例(需要 readhgt.m 作者的函数): X = readhgt(36:38,12:15,'merge','crop',[36.5,38.5,12.2,16],'plot'); [lon,lat] = meshgrid(X.lon,X.lat); [x,y,zone] = ll2utm(lat,lon); % 做这项工作! z = double(Xz); z(z==-32768 | z<0) = NaN; 数字pcolor(x,y,z); 遮光平面; 坚持,稍等轮廓(x,y,z,[
2024-08-15 17:10:22 7KB matlab
1
直接光子光谱的计算精度达到目前最高,并与LHC发生8次TeV碰撞时的ATLAS数据进行了比较。 预测包括通过程序PeTeR以最接近对数的顺序恢复阈值,使用JetPhox匹配具有片段化效果的最接近的对数固定顺序,并包括恢复对数电弱的Sudakov前导 效果。 值得注意的是,当依次添加计算的每个组成部分时,可以看到与数据的改进一致性。 该比较证明了阈值对数和电弱Sudakov效应的重要性。 包括预测的数值。
2024-07-04 11:01:44 428KB Open Access
1
本工具采用人工智能算法,可以精确地识别二维码,并对不完整的二维码进行修正,速度快,精度高,是人工智能专家和业余爱好者都不能错过的一款软件!
2024-06-18 18:24:25 3.84MB 二维码 人工智能 AI算法
1
精确测量4H-SiC光电导开关光电导性能的新方法
2024-05-17 18:50:55 512KB 研究论文
1
已经指出,目前在B→ρρ衰减中实现的Cabibbo-Kobayashi-Maskawa(CKM)矩阵的弱相位ϕ2 =α的最精确确定易于在(Γρ/mρ)的水平上进行小的校正。 由于ρ宽度引起的I = 1振幅,因此为2。 使用Breit–Wigner分布对形成ρ介子的两对介子,我们研究了I = 1对B→ρρ衰减率的影响,它是ρ谱带的宽度和位置的函数。 我们发现,在没有特别提高I = 1幅度的情况下,在SuperKEKB处将单个频带减小到宽度Γρ会导致对ρ宽度完全不敏感的结果。 如果I = 1幅度相对于I = 0,2幅度动态增强,则可以使用两个分开的宽度为ρρ的ρ波段对其进行“放大镜”测量。 从测得的衰减率中减去I = 1的贡献将导致非常精确地确定进行同位旋分析所需的I = 0,2幅度。
2024-04-06 13:57:35 258KB Open Access
1