四旋翼无人机轨迹跟踪的自适应滑模控制及其Matlab仿真.pdf
2025-10-10 17:27:49 55KB
1
内容概要:本文详细介绍了预设性能控制(PPC)的理论基础及其在MATLAB环境下的具体实现。首先,文章解释了性能函数的设计,通过指数衰减函数划定误差的活动范围,并引入误差变换使原始误差压缩到指定区间。接着,文章探讨了障碍李雅普诺夫函数的应用,利用对数项作为屏障防止误差越界。随后,文章阐述了有限时间滑模控制的增强机制,通过设计滑模面和控制律,实现了系统的快速收敛。最后,文章提供了完整的仿真框架,展示了如何应用这些技术于二阶系统,特别是电机和机械臂等应用场景。 适用人群:自动化控制领域的研究人员和技术人员,尤其是那些熟悉MATLAB并希望深入了解预设性能控制的人士。 使用场景及目标:适用于需要精确控制误差边界的应用场合,如工业自动化、机器人控制等领域。主要目标是提高系统的响应速度和稳定性,同时确保误差始终保持在预设范围内。 其他说明:文中提供的MATLAB代码可以直接用于实验验证,但需要注意参数的选择和调整,以避免可能出现的问题,如控制量饱和或抖振。此外,实际应用中还需考虑外部扰动的影响,建议增加干扰观测器以提升系统的鲁棒性。
2025-10-10 14:42:23 293KB
1
基于自抗扰控制的PMSM非奇异终端滑模控制:详细公式推导与稳定性分析,含1.5延时补偿设计方法,自抗扰控制下的PMSM非奇异终端滑模控制:详细公式推导与稳定性分析,含1.5延时补偿设计方法,基于自抗扰控制的非奇异终端滑模控制_pmsm 包含:详细公式推导以及终端滑模控制设计方法以及稳定性推导、1.5延时补偿。 ,基于自抗扰控制的非奇异终端滑模控制_pmsm; 详细公式推导; 终端滑模控制设计方法; 稳定性推导; 1.5延时补偿。,自抗扰控制下的PMSM非奇异终端滑模控制设计方法研究 在现代电力电子和自动控制领域,永磁同步电机(PMSM)因其高效率、高功率密度以及良好的控制性能而被广泛应用。在实际应用中,电机控制的稳定性与快速响应能力是影响系统性能的关键因素。自抗扰控制(ADRC)和非奇异终端滑模控制(NTSMC)作为两种先进的控制策略,在提高系统鲁棒性、减少对系统模型精确性的依赖方面展现了巨大潜力。本文旨在探讨基于自抗扰控制的PMSM非奇异终端滑模控制策略的详细公式推导、稳定性分析,以及1.5延时补偿设计方法。 自抗扰控制技术是一种能够有效应对系统外部扰动和内部参数变化的控制方法。它通过实时估计和补偿系统内外扰动来实现对系统动态行为的有效控制。在电机控制系统中,ADRC可以显著增强系统对负载变化、参数波动等不确定因素的适应能力,从而提高控制精度和鲁棒性。 非奇异终端滑模控制是一种新型的滑模控制技术,其核心在于设计一种非奇异滑模面,避免传统滑模控制中可能出现的“奇异点”,同时结合终端吸引项,使得系统状态在有限时间内收敛至平衡点。NTSMC具有快速、准确以及无需切换控制输入的优点,非常适合用于高性能电机控制系统。 在研究中,首先需要详细推导基于自抗扰控制的PMSM非奇异终端滑模控制的相关公式。这包括建立PMSM的数学模型,设计自抗扰控制器以补偿系统内外扰动,以及构造非奇异终端滑模控制律。在推导过程中,需要充分考虑电机的电磁特性、转动惯量以及阻尼效应等因素。 接下来,稳定性分析是控制策略设计的关键环节。通过李雅普诺夫稳定性理论,可以对控制系统的稳定性进行深入分析。通过选择合适的李雅普诺夫函数,证明在给定的控制律作用下,系统的状态能够收敛至平衡点,从而确保电机控制系统的稳定性。 1.5延时补偿设计方法是提高系统控制性能的重要环节。在电机控制系统中,由于信息处理、执行器动作等方面的延迟,系统中必然存在一定的时延。为了保证控制性能,需要在控制策略中引入延时补偿机制。通过精确估计系统延迟,并将其纳入控制律中,可以有效减少时延对系统性能的影响。 本文档中包含了多个以“基于自抗扰控制的非奇异终端滑模控制”为主题的文件,文件名称后缀表明了文件可能是Word文档、HTML网页或其他格式。从文件列表中可以看出,内容涵盖了详细公式推导、滑模控制设计方法、稳定性分析以及延时补偿设计方法等多个方面。此外,文档中还包含“应用一”、“应用二”等内容,表明了该控制策略在不同应用场合下的具体运用和实验研究。 基于自抗扰控制的PMSM非奇异终端滑模控制策略通过结合ADRC和NTSMC的优势,能够有效提升电机控制系统的稳定性和响应速度,减少对系统精确模型的依赖,并通过延时补偿设计提高控制性能。这项研究为高性能电机控制系统的开发提供了新的思路和方法。
2025-09-19 14:14:25 659KB edge
1
无线电能传输(WPT)的LCL-S拓扑及其在MATLAB/Simulink环境下的仿真模型。LCL-S拓扑由两电平H桥逆变器、LCL-S串联谐振和不可控整流结构组成,适用于高频能量传输并具有良好阻抗匹配特性。文中重点探讨了三种控制方法——滑模控制、移相控制和PI控制,并对其仿真效果进行了对比分析。滑模控制通过实时调整逆变器输出电压确保系统最优工作点;移相控制则通过调整相位差优化能量传输;PI控制利用比例和积分环节保持系统稳定。最终,通过对比实验验证了各控制方法在不同工况下的性能差异。 适合人群:从事无线电能传输研究的技术人员、高校师生以及对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:①理解和掌握LCL-S拓扑的工作原理及其在无线电能传输中的优势;②评估滑模控制、移相控制和PI控制在LCL-S拓扑中的应用效果,为实际项目选型提供依据。 其他说明:附带的文章有助于加深对仿真实验的理解,建议结合理论与实操进行学习。
2025-08-25 17:39:46 492KB
1
非奇异滑模控制技术:TSMC、NTSMC、FTSMC与NFTSMC的加速特性与抖动抑制效果对比研究,非奇异滑模控制:TSMC、NTSMC、FTSMC与NFTSMC的加速趋近特性与抖动抑制效果比较研究,非奇异快速终端滑模控制 包含:TSMC、NTSMC、FTSMC、NFTSMC等滑模控制方法,对比了趋近率的加速特性,渐近性质和抖动抑制效果 ,非奇异快速终端滑模控制(非奇异滑模、快速终端滑模); TSMC、NTSMC、FTSMC、NFTSMC; 趋近率加速特性; 渐近性质; 抖动抑制效果,非奇异快速与渐近滑模控制方法对比研究
2025-07-07 10:44:33 1.9MB css3
1
无感FOC驱动滑膜观测器算法应用及全开源代码详解——采用SVPWM与滑模控制方案,基于STM32F103实现,无感FOC驱动滑膜观测器算法原理及应用,采用全开源c代码及SVPWM弦波方案,基于STM32F103处理器,无感FOC 滑膜观测器 滑模 弦波方案 svpwm 算法采用滑膜观测器,全开源c代码,全开源,启动顺滑,提供原理图、全套源码。 使用stm32f103。 ,无感FOC; 滑膜观测器; 滑模; 弦波方案; svpwm; 代码全开源; STM32F103; 启动顺滑。,基于滑膜观测器的无感FOC算法:STM32F103全开源C代码实现
2025-06-25 14:47:58 920KB xbox
1
内容概要:本文详细介绍了双容水箱液位控制系统的建模、控制器设计及其仿真过程。首先,通过对双容水箱物理特性的深入分析,建立了传递函数模型和状态空间方程模型。接着,探讨了多种控制器的应用效果,包括传统的PID控制器、用于处理系统滞后的SMITH预估控制器、融合模糊逻辑与PID优点的模糊PID串级控制器以及具有强鲁棒性的滑模变结构控制器。每种控制器都通过具体的MATLAB/Simulink代码实现了仿真测试,并对比了各自的优缺点。最终,通过对不同控制器的实验结果比较,得出了关于最佳控制策略的选择建议。 适用人群:自动化专业学生、工业自动化工程师、从事过程控制研究的技术人员。 使用场景及目标:适用于需要理解和掌握复杂非线性系统控制方法的研究人员和技术人员,旨在帮助他们选择最适合特定应用场景的控制器类型,提高控制系统的性能和稳定性。 其他说明:文中不仅提供了详细的理论解释,还有丰富的实例代码供读者参考实践,有助于加深对控制理论的理解并应用于实际工程项目中。
2025-06-19 16:46:15 200KB Matlab 模糊控制 滑模控制
1
非线性控制策略应用于与永磁同步电机,PMSM作为最广泛的交流电机被生产生活广泛应用,传统的PI控制策略存在着输出转矩过大的缺点,本设计通过非线性控制策略——滑模控制,极大地减小了输出转矩,使该电机具有抵抗负载扰动的特性,同时兼顾快速性和稳定性。 该设计适用于电气工程专业和自动化专业的毕业设计,资料提供Word可编辑文档和MATLAB仿真源码,为毕业设计的研究和学习提供了有效的范本和参考。 在电气工程自动化专业领域,永磁同步电机(Permanent Magnet Synchronous Motor,简称PMSM)作为交流电机的重要类型,因其高效率、高功率密度和高性能运行能力,在工业生产中得到了广泛的应用。然而,在传统控制策略中,如比例-积分(PI)控制,存在着对外部负载扰动敏感,以及输出转矩波动较大的问题,这些问题限制了PMSM在要求高动态性能和稳定运行场景下的应用。 为了解决这些难题,研究者们探索了多种非线性控制策略,其中滑模控制(Sliding Mode Control,简称SMC)因其独特的优点而备受关注。滑模控制是一种变结构控制方法,它通过改变控制器的结构来适应系统的动态变化。在PMSM控制系统中,滑模控制策略能够提供一种有效的手段来减小输出转矩的波动,增强电机对负载扰动的抵抗能力,同时保持系统的快速响应特性和稳定运行。 滑模控制策略在PMSM控制中的应用研究,涉及对电机数学模型的精确建立,以及控制器参数的设计和优化。通过对电机模型的研究,可以更好地理解电机在不同工况下的动态行为,并据此设计出能够精确控制电机转速和转矩的滑模控制器。此外,滑模控制策略还需要考虑实际应用中的执行器限制、参数不确定性以及外部干扰等因素,以确保控制器的鲁棒性和实用性。 在本设计中,滑模控制策略被应用于PMSM的仿真设计,旨在展示其在电机控制中的有效性。设计成果包括可编辑的Word文档和MATLAB仿真源码。Word文档详细描述了滑模控制策略的设计流程、仿真模型的搭建步骤以及参数设置,为相关专业的学生和研究人员提供了研究和学习的参考。而MATLAB仿真源码则提供了一个可以直接运行的平台,通过仿真实验来验证滑模控制策略的性能,包括在不同负载和扰动条件下的电机运行特性。 整体而言,基于滑模控制策略的永磁同步电机仿真设计不仅为电气工程自动化专业的毕业设计提供了一个富有启发性的案例,也为工业电机控制技术的进步和优化做出了贡献。通过这种方法,可以进一步提升PMSM的性能,拓宽其在高精度控制需求领域的应用范围。
2025-05-26 17:56:47 12.88MB
1
1、资源内容:基于Matlab实现自适应RBF神经网络观测器设计与滑模控制(源码).rar 2、适用人群:计算机,电子信息工程、数学等专业的学习者,作为“参考资料”参考学习使用。 3、解压说明:本资源需要电脑端使用WinRAR、7zip等解压工具进行解压,没有解压工具的自行百度下载即可。 4、免责声明:本资源作为“参考资料”而不是“定制需求”,代码只能作为参考,不能完全复制照搬。不一定能够满足所有人的需求,需要有一定的基础能够看懂代码,能够自行调试代码并解决报错,能够自行添加功能修改代码。由于作者大厂工作较忙,不提供答疑服务,如不存在资源缺失问题概不负责,谢谢理解。
2025-05-20 09:25:36 27KB 神经网络 matlab
1
Boost电路是一种常见的直流-直流变换器,广泛应用于电源管理、电池充电器、LED驱动器等领域。其核心作用是提升输入电压,输出一个高于输入的稳定直流电压。Boost电路主要包含一个开关、一个电感、一个二极管和一个电容。在工作过程中,开关交替导通和截止,通过电感和电容的储能和释能作用,实现电压的提升和输出电压的稳定。 滑模控制(Sliding Mode Control,SMC)是一种特殊的非线性控制方法,其基本思想是通过控制作用强迫系统状态轨迹达到并沿着预定的滑模面运动。滑模控制具有快速响应、良好的鲁棒性及对参数变化和外部扰动不敏感等特点,使其在电机驱动、机器人控制和电力电子等领域具有广泛的应用。滑模控制在Boost电路中的应用,主要是为了改善电路的动态性能和提高对外界干扰的抵抗力。 文章复现指的是对已发表的学术文章中的实验和结果进行重现和验证的过程。在电力电子领域,对Boost电路和SMC滑模控制的研究文章进行复现,不仅可以检验原有研究的准确性和可靠性,也能够帮助研究者进一步理解控制算法的实现过程,探索其在不同条件下的表现。此外,复现过程中可能发现新的问题或者优化方向,推动相关领域知识的发展和技术的进步。 在本压缩包中包含的文件有:电路滑模控制文章复现.html,这个文件可能是一个网页文档,用于展示复现过程中的电路设计、控制策略、实验结果等详细信息;2.jpg、1.jpg和3.jpg,这些图片文件可能是电路图、实验波形图或是其他相关的图表;电路滑模控制文章复.txt、电路滑模控制.txt和电路滑模控制文章复现.txt,这些文本文件可能是复现过程中使用的代码、设计说明、实验步骤或者数据分析等内容。通过这些文件的综合分析,可以完整地复现并验证Boost电路在SMC滑模控制下的性能。 根据以上信息,我们可以总结出Boost电路、SMC滑模控制以及文章复现的基本知识点:1) Boost电路的结构和工作原理;2) SMC滑模控制的设计方法和特点;3) 文章复现的重要性以及在电力电子领域的作用。这些知识点对于电子工程师和研究人员在设计高效、稳定的电源系统方面具有重要的参考价值。
2025-05-06 20:39:51 287KB
1