使用boost最新版本1.81.0库制作的聊天软件,包含服务端、客户端程序,代码全程包含中文注释。如main主函数、服务端类、客户端类、异步lamba函数调用,聊天室消息队列、客户端连接队列、聊天内容协议解析等。 如没有boost 1.81.0库,需先下载: https://www.boost.org/users/download/ 部分代码示例如下 // 发布该聊天消息 void deliver(const chat_message& msg) { // 添加到聊天队列中,如果超出最大消息数目,则弹出1条最早的消息 recent_msgs_.push_back(msg); while (recent_msgs_.size() > max_recent_msgs) recent_msgs_.pop_front(); // 给聊天室内每个人发送最新消息 for (auto participan: participants_) participant->deliver(msg); }
2024-06-21 16:25:00 10KB 服务端软件 asio 聊天软件
1
本文深入探讨了电力系统动态状态估计的两种方法:扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)。文章首先介绍了这两种滤波技术的基本原理和算法流程,接着通过实例分析和数值模拟,比较了它们在电力系统状态估计中的性能差异。此外,文章还讨论了如何根据电力系统的具体特点和需求,选择最合适的滤波方法。本文旨在为电力工程师和研究人员提供有关动态状态估计的实用指南,并推动相关领域的进一步研究和发展。 适用人群:电力工程师、控制系统研究人员、卡尔曼滤波技术爱好者 使用场景:电力系统状态监测、故障诊断、系统控制与优化 电力系统、动态状态估计、扩展卡尔曼滤波、无迹卡尔曼滤波
2024-06-18 09:47:32 8.82MB matlab 无迹卡尔曼滤波
1
DWA(Dynamic Window Approach)算法是一种用于机器人路径规划的动态方法,它由Dieter Fox等人在1997年提出。DWA主要设计用于处理机器人的动态规划问题,尤其是在机器人需要考虑自身运动学约束和环境中的动态障碍物时。以下是DWA算法的详细介绍: ### 1. 算法背景 在许多实际应用中,机器人面临的路径规划问题不仅需要考虑静态障碍物,还需要实时响应环境中的动态变化。DWA算法通过使用一个动态窗口来评估潜在的运动,从而适应这些动态条件。 ### 2. 算法原理 DWA算法的核心思想是在每个时间步评估机器人的多个潜在运动,并选择一个既避开障碍物又达到目标的运动。 #### a. 动态窗口 在每个时间步,算法不是在整个工作空间中搜索,而是在机器人周围的一个有限的“动态窗口”内进行采样。 #### b. 运动评估 对于每个采样点,算法评估该运动的“好坏”,考虑因素包括到达目标的距离、避开障碍物的程度以及机器人的运动学约束。 #### c. 概率选择 算法根据评估为每个运动分配一个概率,然后随机选择一个运动作为下一步的执行动作。 ### 3. 算法步骤
2024-06-17 20:54:14 7KB matlab
1
跨数百个基因组进行基因家族注释的管道 该管道可以自动化并标准化新生成的基因组数据集中许多基因家族的基因家族注释。 该管道可以获取最准确的基因拷贝数,并最大程度地减少可能会干扰下游比较分析的方法论偏见。 BITACORA和GeMoMa是用于识别和注释基因组装配中的基因家族的主要工具,第一步是基于输入文件以及要注释的基因家族信息,使用Blastp和InterProScan识别和管理基因模型。 内容 先决条件 安装 计算要求 用法 4.1准备数据 4.2运行管道 4.3输出 例子 1.先决条件 运行管道所必需的依赖关系是: Perl :大多数操作系统默认安装Perl。 有关安装说明,请参见 。 Python :从下载可用的最新版本 BLAST :从以下地址下载blast可执行文件:ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATE
2024-06-05 13:05:28 1.23MB Perl
1
自己写stm32加机械手臂程序注释详细 用蓝牙控制的智能机械手臂小车,刚刚学习的时候写的代码注解挺详细的
2024-05-30 11:00:19 8.34MB
Informed RRT* 是一种基于 RRT* (Rapidly-exploring Random Tree Star) 算法的优化路径规划算法。它通过引入启发式信息来提高搜索效率和最终路径的优化程度。以下是 Informed RRT* 算法的详细介绍: ### 1. 算法背景 在路径规划领域,尤其是针对机器人导航和无人驾驶等应用,算法需要快速且准确地生成安全有效的路径。RRT* 算法因其在处理复杂动态环境和实时性方面的优势而被广泛使用。然而,RRT* 算法在搜索过程中可能会生成大量冗余的分支,导致效率不高。 ### 2. Informed RRT* 算法原理 Informed RRT* 算法的核心在于使用一个可接受的椭圆启发式(admissible ellipsoidal heuristic)来指导搜索过程,从而提高算法的效率和解的质量。 #### a. 椭圆启发式 椭圆启发式定义了一个状态空间的子集,这个子集包含了所有可能改进当前解的状态。椭圆的形状取决于起始状态、目标状态以及当前最佳解的成本。 #### b. 直接采样 Informed RRT* 通过直接从这个椭圆启发
2024-05-22 18:51:53 12KB matlab
1
非常好的c、c++源代码注释移除工具。可对多个文件执行操作,非常简洁,方便。
2024-05-22 16:46:30 44KB
1
DWA(Dynamic Window Approach)算法是一种用于机器人路径规划的算法,它由Andrew Kelly和Lydia E. Kavraki于1996年提出。DWA算法特别适用于在动态环境中进行机器人的实时路径规划,如无人驾驶汽车、无人机(UAV)和移动机器人等。以下是DWA算法的详细解释: ### 1. 算法原理 DWA算法的核心思想是在机器人的控制空间中搜索一个可行的控制序列,使得机器人能够在避免碰撞的同时,尽可能快速地达到目标位置。 ### 2. 算法步骤 DWA算法通常包括以下步骤: #### 2.1 初始化 - 确定机器人的初始位置和目标位置。 - 定义机器人的动力学模型和运动学约束。 #### 2.2 控制空间采样 - 在给定的时间间隔内,从控制空间中随机采样一系列的控制输入(如速度、加速度、转向角等)。 #### 2.3 预测模型 - 对于每个采样的控制输入,使用机器人的动力学模型预测未来一段时间内机器人的位置和姿态。 #### 2.4 碰撞检测 - 对于每个预测的未来状态,检查是否存在碰撞风险。这通常涉及到与环境障碍物的几何关系检查。
2024-05-22 10:47:38 9KB matlab
1
基于随机森林RF的回归预测,随机森林RF重要性排序,多变量输入模型。 运行环境为matlab2018,程序内注释详细,直接替换数据就可以用。随机森林的特征变量重要性排序在特征选择和特征分析中具有广泛的用途。它可以用来识别哪些特征对目标变量的预测最为重要,从而帮助我们理解数据中的关键特征和影响因素。
2024-05-22 10:08:37 32KB 随机森林
1
1.自己复现的一个 Restormer 训练测试方法。 2.Restormer 对于显卡的要求很高,而且训练时间非常久,自己跑需要自行改变一些参数。 3.只需要将图片放入对应路径下就可以直接运行。 4.敲代码不易,希望能不吝支持,有问题欢迎交流。
2024-05-21 10:32:55 83.03MB 图像恢复 Transformer