自适应学习率调整法 在BP算法中,网络权值的调整取决于学习速率和梯度。在标准BP 算法中,学习速率是不变的。 而在自适应学习率调整法中,通常学习速率的调整准则是:检查权值的修正是否真正降低了误差函数,如果确实如此,则说明所选的学习率小了,可对其增加一个量;若不是则说明产生了过调,那么就应减小学习速率的值。
2022-06-05 17:03:03 2.75MB 算法 matlab
1
深度学习:学习率规划-余弦退火CosineAnnealing和WarmRestart原理及实现 深度学习原理.pdf
2022-04-15 13:17:28 1.21MB 深度学习 学习 人工智能
随着网民的数量不断增加,用户上网产生的数据量也在成倍增多,随处可见各种各样的评论数据,所以构建一种高效的情感分类模型就非常有必要.本文结合Word2Vec与LSTM神经网络构建了一种三分类的情感分类模型:首先用Word2Vec词向量模型训练出情感词典,然后利用情感词典为当前训练集数据构建出词向量,之后用影响LSTM神经网络模型精度的主要参数来进行训练.实验发现:当数据不进行归一化,使用He初始化权重,学习率为0.001,损失函数选择均方误差,使用RMSProp优化器,同时用tanh函数作为激活函数时,测试集的总体准确率达到了92.28%.与传统的Word2Vec+SVM方法相比,准确率提高了大约10%,情感分类的效果有了明显的提升,为LSTM模型的情感分类问题提供了新的思路.
1
一种自适应学习率的卷积神经网络模型及应用
2022-03-22 20:33:47 5.12MB 研究论文
1
MNIST-Tensorflow 99.6599% 我写了一个Tensorflow代码用于MNIST数据的分类。 您可以使用以下命令获取结果: python main.py 此代码具有以下功能 使用了数据扩充(训练数据:50,000-> 250,000) 使用具有He_initializer的3x3转换,交错转换,衰减速率为0.9的batch_norm,Max_Pooling 激活功能为tf.nn.leaky_relu 使用全球平均池代替MLP 使用L2正则化损失,学习率衰减,beta1 = 0.5的Adam优化 它包含Tensorboard,保存,恢复的代码 环保环境 操作系统:Ubuntu 16.04 的Python 3.5 Tensorflow-gpu版本:1.4.0rc2(要求版本1.4.0以上) 如果出现错误,例如: "Expected int32, g
2021-12-11 04:21:24 15.31MB Python
1
现有深度残差网络作为一种卷积神经网络的变种,由于其良好的表现,被应用于各个领域,深度残差网络虽然通过增加神经网络深度获得了较高的准确率,但是在相同深度情况下,仍然有其他方式提升其准确率.本文针对深度残差网络使用了三种优化方法:(1)通过卷积网络进行映射实现维度填充;(2)构建基于SELU激活函数的残差模块(3)学习率随迭代次数进行衰减.在数据集Fashion-MNIST上测试改进后的网络,实验结果表明:所提出的网络模型在准确率上优于传统的深度残差网络.
1
最小二乘法是统计中估计各种数据之间相关性的最基本方法之一。 另一方面,深度学习是人工智能的心脏,它是一种基于最小二乘的学习方法。 在本文中,我们从深度学习的角度重新考虑了最小二乘法,并在非常简单的设置下彻底进行了梯度下降序列的计算。 根据学习率的值(深度学习的必要参数),统计学和深度学习的最小二乘法显示出一个有趣的差异。
2021-11-28 17:24:45 539KB 最小二乘法 统计 深度学习 学习率
1
1.学习率η和动量因子α BP算法本质上是优化计算中的梯度下降法,利用误差对于权、阀值的一阶导数信息来指导下一步的权值调整方向,以求最终得到误差最小。为了保证算法的收敛性,学习率η必须小于某一上限,一般取0<η<1而且越接近极小值,由于梯度变化值逐渐趋于零,算法的收敛就越来越慢。在网络参数中,学习率η和动量因子α是很重要的,它们的取值直接影响到网络的性能,主要是收敛速度。为提高学习速度,应采用大的η。但η太大却可能导致在稳定点附近振荡,乃至不收敛。针对具体的网络结构模型和学习样本,都存在一个最佳的学习率门和动量因子α,它们的取值范围一般0~1之间,视实际情况而定。在上述范围内通过对不同的η和α的取值进行了考察,确定本文神经网络模型的参数为:η=0.7,α=0.9。
2021-11-27 10:16:14 1.59MB BP、神经网络
1
权重衰减(weight decay)与学习率衰减(learning rate decay)
2021-11-15 09:55:20 64KB
1
【ch09-过拟合】 学习率与动量.pdf
2021-09-21 11:01:42 825KB 互联网