上传者: 42200829
|
上传时间: 2021-11-27 10:16:14
|
文件大小: 1.59MB
|
文件类型: -
1.学习率η和动量因子α
BP算法本质上是优化计算中的梯度下降法,利用误差对于权、阀值的一阶导数信息来指导下一步的权值调整方向,以求最终得到误差最小。为了保证算法的收敛性,学习率η必须小于某一上限,一般取0<η<1而且越接近极小值,由于梯度变化值逐渐趋于零,算法的收敛就越来越慢。在网络参数中,学习率η和动量因子α是很重要的,它们的取值直接影响到网络的性能,主要是收敛速度。为提高学习速度,应采用大的η。但η太大却可能导致在稳定点附近振荡,乃至不收敛。针对具体的网络结构模型和学习样本,都存在一个最佳的学习率门和动量因子α,它们的取值范围一般0~1之间,视实际情况而定。在上述范围内通过对不同的η和α的取值进行了考察,确定本文神经网络模型的参数为:η=0.7,α=0.9。