TF图神经网络样本 该存储库是代码版本,对应于介绍具有特征线性调制的图神经网络(GNN)的文章( )。 在本文中,讨论了许多GNN架构: 门控图神经网络(GGNN)( )。 关系图卷积网络(RGCN)( )。 关系图注意力网络(RGAT)-图注意力网络( )对几种边缘类型的概括。 关系图同构网络(RGIN)-图同构网络( )对几种边缘类型的概括。 带有边缘MLP的图形神经网络(GNN-Edge-MLP)-RGCN的一种变体,其中边缘上的消息是使用完整MLP而非单个层来计算的。 关系图动态卷积网络(RGDCN)-RGCN的新变体,其中动态计算卷积层的权重。 具特征线性调制(GNN-FiLM)的图形神经网络-带有FiLM层的RGCN的新扩展。 本文中提出的结果基于该存储库中提供的模型和任务的实现。 此代码已在使用TensorFlow 1.13.1的Python 3.
2023-03-11 09:22:01 25.7MB Python
1
Heterogeneous Information Network 传统的同构图(Homogeneous Graph)中只存在一种类型的节点和边,当图中的节点和边存在多种类型和各种复杂的关系时,再采用Homo的处理方式就不太可行了。这个时候不同类型的节点具有不同的特征,其特征可能落在不同的特征空间中,如果仍然共享网络参数、同样维度的特征空间,又或者尝试将异构图映射到同构图中,根本无法学习到“异构”的关键,即无法探索到不同节点之间,监督标签之间的联系,而这又是十分重要的。 如上图著名的异构例子,学术网络图,它包含“论文”paper、“作者”author、“会议”venue和“机构”org等节点类
2023-02-11 20:56:14 384KB al OR te
1
图神经网络DGL框架中文详细文档
2023-01-05 17:30:19 8.52MB 图计算 图神经网络 深度学习 pytorch
1
极端天气情况一直困扰着人们的工作和生活。部分企业或者工种对极端天气的要求不同,但是目前主流的天气推荐系统是直接将天气信息推送给全部用户。这意味着重要的天气信息在用户手上得不到筛选,降低用户的满意度,甚至导致用户的经济损失。我们计划开发一个基于图神经网络的天气靶向模型,根据用户的历史交互行为,判断不同天气对他的利害程度。如果有必要,则将该极端天气情况推送给该用户,让其有时间做好应对准备。该模型能够减少不必要的信息传递,提高用户的体验感。 模型介绍 (一)数据集共有三个txt文件,分别是user.txt,weather.txt,rating.txt。这些文件一共包含900名用户,1600个天气状况,95964条用户的历史交互记录。 (1)user.txt 用户的信息记录在user.txt中。格式如下: 用户ID\t年龄\t性别\t职业\t地理位置 (2)weather.txt 天气的信息记录在weather.txt中。格式如下: 天气ID\t天气类型\t温度\t湿度\t风速 (3)rating.txt 用户的历史交互记录在rating.txt中。格式如下: 用户ID\t天气ID\t评分
2023-01-02 20:27:42 582KB 人工智能 图神经网络
1
data(近期用到的“图卷积学习”方面的数据集),保存记录。
1
图神经网络(Graph Neural Network,GNN)GCN/GAT/Graphsage
2022-12-28 14:27:43 953KB 图神经网络 GCN GAT
1
这是关于 图卷积GCN模型学习的资料,欢迎下载学习。
2022-12-28 10:26:57 923KB 人工智能 图神经网络 图卷积 GCN
1
这是关于图神经网络入门学习的一个简单资料。仅学习使用。
2022-12-28 09:29:01 1.41MB 人工智能 深度学习 图神经网络 GNN
1
SZ-taxi。该数据集由深圳2015年1月1日至1月31日的出租车轨迹数据组成,本文选取罗湖区156条主要道路作为研究区域。实验数据主要包括两部分。一个是156*156的邻接矩阵,它描述了道路之间的空间关系。每一行表示一条道路,矩阵中的值表示道路之间的连接性。另一个是特征矩阵,它描述了每条道路上的速度随时间的变化。每一行代表一条路,每一列是不同时段道路上的交通速度。每15分钟计算一次每条路上的车速。GNN-LSTM GCN GNN LSTM RNN
2022-12-21 11:27:21 2.03MB 深度学习 LSTM 图神经网络 智能交通
1