tf-gnn-samples:图神经网络的TensorFlow实现

上传者: 42127783 | 上传时间: 2023-03-11 09:22:01 | 文件大小: 25.7MB | 文件类型: ZIP
TF图神经网络样本 该存储库是代码版本,对应于介绍具有特征线性调制的图神经网络(GNN)的文章( )。 在本文中,讨论了许多GNN架构: 门控图神经网络(GGNN)( )。 关系图卷积网络(RGCN)( )。 关系图注意力网络(RGAT)-图注意力网络( )对几种边缘类型的概括。 关系图同构网络(RGIN)-图同构网络( )对几种边缘类型的概括。 带有边缘MLP的图形神经网络(GNN-Edge-MLP)-RGCN的一种变体,其中边缘上的消息是使用完整MLP而非单个层来计算的。 关系图动态卷积网络(RGDCN)-RGCN的新变体,其中动态计算卷积层的权重。 具特征线性调制(GNN-FiLM)的图形神经网络-带有FiLM层的RGCN的新扩展。 本文中提出的结果基于该存储库中提供的模型和任务的实现。 此代码已在使用TensorFlow 1.13.1的Python 3.

文件下载

资源详情

[{"title":"( 65 个子文件 25.7MB ) tf-gnn-samples:图神经网络的TensorFlow实现","children":[{"title":"tf-gnn-samples-master","children":[{"title":"models","children":[{"title":"rgin_model.py <span style='color:#111;'> 1.92KB </span>","children":null,"spread":false},{"title":"rgcn_model.py <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"sparse_graph_model.py <span style='color:#111;'> 18.82KB </span>","children":null,"spread":false},{"title":"gnn_film_model.py <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":"gnn_edge_mlp_model.py <span style='color:#111;'> 1.87KB </span>","children":null,"spread":false},{"title":"ggnn_model.py <span style='color:#111;'> 1.68KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 322B </span>","children":null,"spread":false},{"title":"rgdcn_model.py <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false},{"title":"rgat_model.py <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false}],"spread":true},{"title":"run_varmisuse_benchs.py <span style='color:#111;'> 4.17KB </span>","children":null,"spread":false},{"title":"tasks","children":[{"title":"ppi_task.py <span style='color:#111;'> 12.74KB </span>","children":null,"spread":false},{"title":"sparse_graph_task.py <span style='color:#111;'> 9.83KB </span>","children":null,"spread":false},{"title":"default_hypers","children":[{"title":"VarMisuse_GNN-FiLM.json <span style='color:#111;'> 929B </span>","children":null,"spread":false},{"title":"PPI_GNN-Edge-MLP1.json <span style='color:#111;'> 227B </span>","children":null,"spread":false},{"title":"VarMisuse_RGIN.json <span style='color:#111;'> 979B </span>","children":null,"spread":false},{"title":"PPI_RGIN.json <span style='color:#111;'> 363B </span>","children":null,"spread":false},{"title":"VarMisuse_RGAT.json <span style='color:#111;'> 849B </span>","children":null,"spread":false},{"title":"QM9_RGCN.json <span style='color:#111;'> 779B </span>","children":null,"spread":false},{"title":"QM9_GNN-FiLM.json <span style='color:#111;'> 825B </span>","children":null,"spread":false},{"title":"VarMisuse_RGCN.json <span style='color:#111;'> 831B </span>","children":null,"spread":false},{"title":"PPI_GGNN.json <span style='color:#111;'> 228B </span>","children":null,"spread":false},{"title":"QM9_GNN-Edge-MLP0.json <span style='color:#111;'> 950B </span>","children":null,"spread":false},{"title":"QM9_GNN-Edge-MLP1.json <span style='color:#111;'> 948B </span>","children":null,"spread":false},{"title":"PPI_GNN-FiLM.json <span style='color:#111;'> 227B </span>","children":null,"spread":false},{"title":"PPI_GNN-Edge-MLP0.json <span style='color:#111;'> 227B </span>","children":null,"spread":false},{"title":"VarMisuse_GNN-Edge-MLP1.json <span style='color:#111;'> 998B </span>","children":null,"spread":false},{"title":"VarMisuse_GNN-Edge-MLP0.json <span style='color:#111;'> 997B </span>","children":null,"spread":false},{"title":"VarMisuse_GGNN.json <span style='color:#111;'> 916B </span>","children":null,"spread":false},{"title":"QM9_GGNN.json <span style='color:#111;'> 806B </span>","children":null,"spread":false},{"title":"QM9_RGAT.json <span style='color:#111;'> 750B </span>","children":null,"spread":false},{"title":"PPI_RGCN.json <span style='color:#111;'> 228B </span>","children":null,"spread":false},{"title":"QM9_RGIN.json <span style='color:#111;'> 999B </span>","children":null,"spread":false},{"title":"PPI_RGAT.json <span style='color:#111;'> 228B </span>","children":null,"spread":false}],"spread":false},{"title":"qm9_task.py <span style='color:#111;'> 13.95KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 221B </span>","children":null,"spread":false},{"title":"citation_network_task.py <span style='color:#111;'> 8.28KB </span>","children":null,"spread":false},{"title":"varmisuse_task.py <span style='color:#111;'> 26.76KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"qm9","children":[{"title":"test.jsonl.gz <span style='color:#111;'> 1.97MB </span>","children":null,"spread":false},{"title":"valid.jsonl.gz <span style='color:#111;'> 1.97MB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 7.05KB </span>","children":null,"spread":false},{"title":"train.jsonl.gz <span style='color:#111;'> 21.69MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"test.py <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false},{"title":"run_qm9_benchs.py <span style='color:#111;'> 3.19KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 4.57KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"CONTRIBUTING.md <span style='color:#111;'> 916B </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 53B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"run_ppi_benchs.py <span style='color:#111;'> 2.51KB </span>","children":null,"spread":false},{"title":"reorg_varmisuse_data.sh <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 14.25KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"model_utils.py <span style='color:#111;'> 2.92KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 5.03KB </span>","children":null,"spread":false},{"title":"citation_network_utils.py <span style='color:#111;'> 5.25KB </span>","children":null,"spread":false},{"title":"varmisuse_data_splitter.py <span style='color:#111;'> 3.56KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 117B </span>","children":null,"spread":false}],"spread":false},{"title":".flake8 <span style='color:#111;'> 126B </span>","children":null,"spread":false},{"title":"gnns","children":[{"title":"gnn_edge_mlp.py <span style='color:#111;'> 6.05KB </span>","children":null,"spread":false},{"title":"rgdcn.py <span style='color:#111;'> 9.33KB </span>","children":null,"spread":false},{"title":"gnn_film.py <span style='color:#111;'> 6.52KB </span>","children":null,"spread":false},{"title":"ggnn.py <span style='color:#111;'> 4.62KB </span>","children":null,"spread":false},{"title":"rgat.py <span style='color:#111;'> 7.65KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 278B </span>","children":null,"spread":false},{"title":"rgin.py <span style='color:#111;'> 7.00KB </span>","children":null,"spread":false},{"title":"rgcn.py <span style='color:#111;'> 5.95KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明