猜数字小游戏。程序可以通过几次提问猜出用户所想的数。
2022-12-15 14:39:11 16KB python
1
深度学习作业_基于pytorch框架python实现手写数字识别完整源码+代码注释+实验报告.zip 使用MNIST手写数字体数据集进行训练和预测,实现测试集准确率达到98%及以上。本实验的目的: 掌握卷积神经网络基本原理,以LeNet为例 掌握主流框架的基本用法以及构建卷积神经网络的基本操作 了解如何使用GPU
深度学习作业_基于pytorch框架python实现自动写诗完整源码+代码注释.zip 自动写诗,使用tang.npz,使用深度学习框架Pytorch,最终实现一个可以自动写诗的程序。本实验的目的如下: 理解和掌握循环神经网络概念及在深度学习框架中的实现 掌握使用深度学习框架进行文本生成任务的基本流程:如数据读取、构造网络、训练和预测等
Python实现表面网格重采样算法ACVD - pyvista/pyacvd-源码
2022-12-14 16:46:42 1.66MB visualization mesh 3d mesh-processing
1
基于python实现的BP神经网络手写数字识别模型实验源码+详细注释+数据集+项目说明+实验结果及总结.7z 人工智能 课程作业 手写数字数据集 BP网络模型识别手写数字 反向传播(英语:Backpropagation,缩写为BP)是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法对网络中所有权重计算损失函数的梯度。这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数。反向传播要求有对每个输入值想得到的已知输出,来计算损失函数梯度。因此,它通常被认为是一种监督式学习方法。反向传播要求人工神经元(或“节点”)的激励函数可微。
基于python实现的CNN卷积神经网络手写数字识别实验源码+详细注释+数据集+项目说明+实验结果及总结.7z 人工智能课程作业 手写数字识别 数据集 详细注释 好理解 实验结果及总结 基于python实现的CNN卷积神经网络手写数字识别实验源码+详细注释+数据集+项目说明+实验结果及总结.7z
基于Keras+python实现的声纹识别系统完整源码(可训练和测试)+带数据集+训练好的模型+项目说明.7z 【项目】基于深度学习的声纹识别 【主要功能】 通过声音识别人物 实现原理(流程): 音频 → 提取语音特征(FFT、Mel过滤、MFCC)→ CNN&GRU → Triplet loss损失函数训练 + 预训练 + 训练得结果
2022-12-14 16:26:54 838.53MB 声音识别 python源码 keras源码 MFCC
基于python实现的广度优先遍历搜索(BFS)实验源码+代码详细注释+项目说明+实验结果及总结.7z 广度优先搜索算法(英语:Breadth-First-Search,缩写为BFS),是一种图形搜索算法。简单的说,BFS是从根节点开始,沿着树的宽度遍历树的节点。如果所有节点均被访问,则算法中止。BFS是一种盲目搜索法,目的是系统地展开并检查图中的所有节点,以找寻结果。 BFS会先访问根节点的所有邻居节点,然后再依次访问邻居节点的邻居节点,直到所有节点都访问完毕。在具体的实现中,使用open和closed两个表,open是一个队列,每次对open进行一次出队操作(并放入closed中),并将其邻居节点进行入队操作。直到队列为空时即完成了所有节点的遍历。closed表在遍历树时其实没有用,因为子节点只能从父节点到达。但在进行图的遍历时,一个节点可能会由多个节点到达,所以此时为了防止重复遍历应该每次都检查下一个节点是否已经在closed中了。
基于python实现的遗传算法实验源码+详细注释+项目说明+实验结果及总结.7z 人工智能课程作业 遗传算法具体步骤: (1)初始化:设置进化代数计数器t=0、设置最大进化代数T、交叉概率、变异概率、随机生成M个个体作为初始种群P (2)个体评价:计算种群P中各个个体的适应度 (3)选择运算:将选择算子作用于群体。以个体适应度为基础,选择最优个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代 (4)交叉运算:在交叉概率的控制下,对群体中的个体两两进行交叉 (5)变异运算:在变异概率的控制下,对群体中的个体进行变异,即对某一个体的基因进行随机调整 (6) 经过选择、交叉、变异运算之后得到下一代群体P1。
python实现基于改进的差分进化算法求解柔性作业车间调度问题源码+项目说明.7z 问题规模以(工件J*工序P*机器M)表示,例如J20P10M10表示共有20个工件,每个工件有10个工序,总共有10个加工机器可供选择。data文件夹中的文件表示程序所用的数据,其中data_first文件的问题规模是J10P5M6,data_second文件的问题规模是J20P10M10,data_third文件的问题规模是J20P20M15。对于其中数据的解释:横向表示工序,纵向表示机器,每个数值表示机器加工工序的耗时,工序和机器都是按顺序排列的。以data_first.txt文件为例,前五行分别表示第一个工件的5个工序分别在6台机器上加工的时间,第5-10行表示第二个工件的5个工序分别在6台机器上加工的时间,以此类推。 关于编码,本项目采用的是同类问题常用的编码方式,参考论文“基于改进遗传算法的柔性作业车间调度问题研究”,与该论文所述的编码方式不同的是,本项目的编码中第一段为工序编码,第二段为机器编码。