image_and_speech_processing Face and speech recognition by use pyqt5 face_recognition baiduai 使用pyqt5 face_recognition 百度ai实现的 对图像和语音的处理 这是上一个版本的更新版 。 这是上一个版本 下面是部分效果图 界面是使用pyqt5 做的 教程稍后会在博客上发布 人脸识别是用face_recognition 这是一些使用方法 语音合成 语音识别是使用百度AI提供的api接口实现 教程稍后再博客上发布 主要思路 稍后再博客上发布
2021-11-10 09:50:20 13.99MB Python
1
从传统方法到深度学习,人脸关键点检测方法综述,非常系统的总结。
2021-11-08 11:13:02 3.08MB 人脸关键点 face landmar
1
face_gui 项目介绍 该项目能够从给定的正面照片中,自动识别脸部区域,并对图像前景进行提取分割,然后替换背景,并按照证件照的规格进行规范化处理。一共由5个模块组成: 1. 头部局部照识别与截取模块设计 利用Vahid Kazemi 和 Josephine Sullivan提出的基于gradient boosting的回归树算法检测面部的68个关键点位置. 2. 图像前景分割 利用opencv中的grabcut方法对人脸周围区域进行分割,将人头和衣服等前景分离出来. 3. 证件照规范化 按照规格进行图片处理:分辨率:361×381,分辨率96dpi,位深度24,大小30k左右. 4. 背景替换 根据图片的背景颜色特征进行替换背景(蓝-红-白),如蓝背景变为红背景:将BGR图像转为HSV图像,蓝颜色H通道在78和110之间,然后转换通道将这些像素替换为(0,0,255)即可。 5. 界面
2021-11-08 00:03:52 902KB Python
1
Python人脸识别第三方库face_recognition接口简单说明,及简单使用方法
2021-11-06 14:41:40 38KB Python人脸识别 face_recognition
1
基于开源人脸库face_recognition的人脸识别,精确率达到99.8
2021-11-06 12:52:40 2KB python3 人脸识别 opencv face_recogni
1
利用一对CNN来提取一对图像特征,然后通过欧氏距离(经典如Saimese网络)或者通过全连接网络(Matchnet)来实现特征的对比,最后通过交叉熵函数来完成优化。
2021-11-04 14:29:05 23.56MB face r deeple
1
resnet_ssd_face_detection 说明        用 OpenCV 调用 Caffe 框架以及训练好的残差神经网络进行人脸检测     流程 加载模型     - .prototxt 为调用 .caffemodel 时的测试网络文件     - .caffemodel 为包含实际图层权重的模型文件
2021-11-02 10:27:22 9.61MB Python
1
人脸识别Python项目源代码
2021-11-01 20:02:53 2KB 人脸识别 源代码
1
使用CNN和CRF进行人脸分割 我们尝试不同的方法来完成人脸分割: 。 型号和更多详细信息,请访问Aaron Jackson的。 我们将CRF添加为后处理。 CRF由实现。 。 原始。 根据地标生成凸包。 在使用所有三种方法之前,我们先检测界标并裁剪图像。 代替在A CNN Cascade for Landmark Guided Semantic Part Segmentation标检测网络,我们使用来检测在大型姿态图像上效果很好的地标。 我们还尝试了其他方法来裁剪图像。 代号 face_segment_part.py:用于地标制导语义部分分割的CNN级联。 face_segment_yuval.py:关于面部分割,面部交换和面部感知。 face_segment_contour.py:检测到地标并获得凸包。 依存关系 请为face_segment_yuval.py下载 (最低版
2021-11-01 19:00:47 956KB crf face segmentation face-segmentation
1
通过KL变换实现特征提取从而达到表情识别以及人脸识别的目的
2021-11-01 17:22:54 2KB matlab例程 matlab