在训练yolov模型时,难以避免的会用到预训练模型,这里帮你整理了yolo系列训练所需要的大部分预训练权重,避免了你需要在外网下载的龟速,希望可以帮到正在需要的你。
2021-11-08 15:52:18 69B 深度学习 预训练权重 yolov5m.zip等
1
伯特 ***** 2020年3月11日新产品:更小的BERT模型***** 此版本发行了24个较小的BERT模型(仅限英语,无大小写,使用WordPiece掩码进行了培训),在读物精通的 。 我们已经证明,除了BERT-Base和BERT-Large之外,标准BERT配方(包括模型体系结构和训练目标)对多种模型尺寸均有效。 较小的BERT模型适用于计算资源有限的环境。 可以按照与原始BERT模型相同的方式对它们进行微调。 但是,它们在知识提炼的情况下最有效,在这种情况下,微调标签是由更大,更准确的老师制作的。 我们的目标是允许在计算资源较少的机构中进行研究,并鼓励社区寻找替代增加模型容量的创新方向。 您可以从 下载全部24个,也可以从下表单独下载: 高= 128 高= 256 高= 512 高= 768 L = 2 L = 4 L = 6 L = 8 L = 10 L = 12 请注意,此版本中包含的BERT-Base模型仅出于完整性考虑; 在与原始模型相同的条件下进行了重新训练。 这是测试集上相应的GLUE分数: 模型 得分 可乐 SST-2 MR
2021-11-08 15:02:52 106KB nlp natural-language-processing google tensorflow
1
FinBERT-QA:使用 BERT 回答金融问题 FinBERT-QA 是一个问答系统,用于从数据集的任务 2 中检索有金融段落。 请参阅获取更多信息。 该系统使用来自信息检索和自然语言处理的技术,首先使用 Lucene 工具包检索每个查询的前 50 个候选答案,然后使用预训练的模型的变新排列候选答案。 FinBERT-QA 从 Huggingface 的库构建并应用 Transfer and Adapt [ ] 方法,首先将预训练的 BERT 模型转移并微调到一般 QA 任务,然后使用 FiQA 数据集将该模型适应金融领域。 转移步骤在的数据集上使用微调的 BERT 模型 ,它从 TensorFlow 转换为 PyTorch 模型。 在三个排名评估指标(nDCG、MRR、Precision)上结果平均提高了约 20%。 Overview of the QA pipeline:
1
albert_zh 使用TensorFlow实现的实现 ALBert基于Bert,但有一些改进。 它以30%的参数减少,可在主要基准上达到最先进的性能。 对于albert_base_zh,它只有十个百分比参数与原始bert模型进行比较,并且保留了主要精度。 现在已经提供了针对中文的ALBERT预训练模型的不同版本,包括TensorFlow,PyTorch和Keras。 海量中文语料上预训练ALBERT模型:参数充分,效果更好。预训练小模型也能拿下13项NLP任务,ALBERT三大改造登顶GLUE基准 一键运行10个数据集,9个层次模型,不同任务上模型效果的详细对比,见 一键运行CLUE中
2021-11-07 16:51:30 969KB tensorflow pytorch albert bert
1
自然语言处理学习笔记 机器学习及深度学习原理和示例,基于Tensorflow和PyTorch框架,Transformer,BERT,ALBERT等最新预训练模型以及源代码详解,以及基于预训练模型进行各种自然语言处理任务。以及模型部署 两种传统的模型: 基于规则或模板生成对话系统 基于概率的语言模型利用语料数据,实现了简略的2-gram模型,并利用该模型判断句子的合理性 根据中国城市的位置信息,实现简单的路径规划系统 根据武汉地铁的各站点的位置信息,实现简单的路径规划系统 图的广度优先搜索及深度优先搜索 搜索问题的抽象模式 旅行推销员问题 启发式 A *搜索 动态规划 机器学习算法,及其应用 python实现基本的神经网络:激活函数,损失函数,前向传播,反向传播 python实现各种梯度下降算法,初始化,批量归一化,正则化 python实施CNN : Tensor Flow基本概念,张量,
2021-11-07 10:00:21 25.6MB 系统开源
1
可视化 使用Tensorflow和Keras中的预训练网络对大型数据集图像进行TSNE可视化 依存关系 麻木 张量流 凯拉斯 keras_vggface scikit学习 matplotlib glob2 皮尔 用法: 执行python tsne-visualization.py --help进行使用
2021-11-06 15:08:12 7.45MB JupyterNotebook
1
今天小编就为大家分享一篇PyTorch加载预训练模型实例(pretrained),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2021-11-05 16:56:15 29KB PyTorch 预训练 模型 pretrained
1
| 本项目提供了针对中文的XLNet预训练模型,扩展了丰富的自然语言处理资源,提供多种中文预训练模型选择。我们欢迎各位专家学者下载使用,并共同促进和发展中文资源建设。 本项目基于CMU /谷歌官方的XLNet: : 其他相关资源: MacBERT预训练模型: : 中文ELECTRA预训练模型: : 中文BERT-wwm预训练模型: : 知识蒸馏工具TextBrewer: : 查看更多哈工大讯飞联合实验室(HFL)发布的资源: : 新闻 2021年1月27日所有模型已支持TensorFlow 2,请通过变压器库进行调用或下载。 2020/9/15我们的论文被录用为长文。 2020/8/27哈工大讯飞联合实验室在通用自然语言理解评论GLUE中荣登榜首,查看,。 2020/3/11为了更好地了解需求,邀请您填写,刹车为大家提供更好的资源。 2020/2/26哈工大讯飞联合实验室发布 历史新闻2019/12/19本目录发布的模型已接受[Huggingface-Transformers]( ) 2019/9/5 XLNet-base已可下载,查看 2019/8/1
1
这包含 MATLAB 和 Simulink Robotics Arena 视频“使用 NVIDIA Jetson 和 ROS 进行深度学习”的示例文件。 此示例演示如何将预训练的神经网络从 MATLAB 部署到 NVIDIA Jetson,并在手写 C++ ROS 节点中使用生成的库。 下载文件后,请查看 README 文档以获取重要的设置信息。 如果您有任何问题,请通过 robotssarena@mathworks.com 与我们联系
2021-11-04 16:39:07 17KB matlab
1
Xception 是一个预训练模型,已经在 ImageNet 数据库的一个子集上进行了训练。 该模型接受了超过一百万张图像的训练,可以将图像分类为1000个对象类别(例如键盘,鼠标,铅笔和许多动物)。 从操作系统或在MATLAB中打开xception.mlpkginstall文件将启动具有该发行版的安装过程。 此 mlpkginstall 文件适用于 R2019a 及更高版本。 用法示例: % 访问训练好的模型净 = xception(); % 查看架构细节网络层 % 读取图像进行分类I = imread('peppers.png'); % 调整图片大小sz = net.Layers(1).InputSize I = I(1:sz(1),1:sz(2),1:sz(3)); % 使用 Xception 对图像进行分类标签 = 分类(净,我) % 显示图像和分类结果数字显示(
2021-11-04 16:36:02 6KB matlab
1