Atari Pong中的深度强化学习算法
概括
此应用程序的目标是找出深度Q学习(DQN)在OpenAI环境中对Pong的Atari 1600游戏有多准确和有效。 在DQN之上,测试了对相同算法的其他改进,包括多步DQN,Double DQN和Dueling DQN。 从下图可以看出,基本DQN仅需玩约110场游戏即可达到类似于人的准确性,而经过300场游戏即可达到极高的准确性。 此项目中考虑的DQN改进版本显示出效率和准确性方面的一些改进。
基本DQN:第1集与第216集
环保环境
Atari 1600仿真器由OpenAI制作,您可以在59种不同的游戏上测试您的强化算法。 使用深度强化学习,因为输入是当前帧(210x160x3)的RGB图片。 由于RGB图片的计算量太大,因此变成了灰度。 接下来是将图像缩减采样并将其剪切到可播放区域,该区域的大小为84x84x1。
灰度,下采样和裁剪
2021-03-27 20:32:26
1.3MB
Python
1