最近几天在参加AI研习社的一个美食识别比赛,比赛方提供了6140张图片的训练集,856张图片的测试集。其中测试集没有标签,只用来生成预测数据进行提交。 任务难度不是很高,但是在做的过程中还是遇到了一些问题,有一些经验值得总结,这里主要记录一下在模型fine-tune中的一些经验教训。 1.模型选择 由简单到复杂,先后选择了resnet50、resnet101、resnext50_32x4d、resnext101_32x8d。 这些模型中,前两个在验证集上的acc在到达94%后就基本上不去了(也可能是我超参不合适没有到最佳性能),resnext50_32x4d的acc能够到达95%,而resne
2021-10-10 21:52:57 61KB c IN linear
1
APPLIED NUMERICAL LINEAR ALGEBRA James W. Demmel University of California Berkeley, California Society for Industrial and Applied Mathematics Philadelphia Contents Preface ix 1 Introduction 1 1.1 Basic Notation 1 1.2 Standard Problems of Numerical Linear Algebra 1 1.3 General Techniques 2 1.3.1 Matrix Factorizations 3 1.3.2 Perturbation Theory and Condition Numbers 4 1.3.3 Effects of Roundoff Error on Algorithms 5 1.3.4 Analyzing the Speed of Algorithms 5 1.3.5 Engineering Numerical Software 6 1.4 Example: Polynomial Evaluation 7 1.5 Floating Point Arithmetic 9 1.5.1 Further Details 12 1.6 Polynomial Evaluation Revisited 15 1.7 Vector and Matrix Norms 19 1.8 References and Other Topics for Chapter 1 23 1.9 Questions for Chapter 1 24 2 Linear Equation Solving 31 2.1 Introduction 31 2.2 Perturbation Theory 32 2.2.1 Relative Perturbation Theory 35 2.3 Gaussian Elimination 38 2.4 Error Analysis 44 2.4.1 The Need for Pivoting 45 2.4.2 Formal Error Analysis of Gaussian Elimination 46 2.4.3 Estimating Condition Numbers 50 2.4.4 Practical Error Bounds 54 2.5 Improving the Accuracy of a Solution 60 2.5.1 Single Precision Iterative Refinement 62 2.5.2 Equilibration 62 2.6 Blocking Algorithms for Higher Performance 63 2.6.1 Basic Linear Algebra Subroutines (BLAS) 66 2.6.2 How to Optimize Matrix Multiplication 67 2.6.3 Reorganizing Gaussian Elimination to Use Level 3 BLAS 72 2.6.4 More About Parallelism and Other Performance Issues . 75 vi Contents 2.7 2.8 2.9 Special Linear Systems 2.7.1 Real Symmetric Positive Definite Matrices 2.7.2 Symmetric Indefinite Matrices 2.7.3 Band Matrices 2.7.4 General Sparse Matrices 2.7.5 Dense Matrices Depending on Fewer Than O(n2) Pa- rameters References and Other Topics for Chapter 2 Questions for Chapter 2 76 76 79 79 83 90 93 93 3 Linear Least Squares Problems 101 3.1 Introduction 101 3.2 Matrix Factorizations That Solve the Linear Least Squares Prob- lem 105 3.2.1 Normal Equations 106 3.2.2 QR Decomposition 107 3.2.3 Singular Value Decompos
2021-10-10 20:43:28 2.64MB Applied Numerical Linear Algebra
1
Linear Algebra and Its Applications (Pearson 4ed 2012) By David.C Lay
2021-10-10 13:15:25 3.44MB 线代 线性代数 Linear Algebra
1
Gilbert_Strang-Linear_Algebra_and_Its_Applications_4ed 课后答案
2021-10-10 12:23:13 1.55MB 矩阵论
1
将简单的解释与大量的实际示例结合起来,提供了一种创新的线性代数教学方法。 不需要先验知识,它涵盖线性代数的各个方面-向量,矩阵和最小二乘
2021-10-09 19:41:47 125B 数学
1
G Strang的经典著作: Introduction to Linear Algebra。 最新第六版,英文原版,MIT课程用书,
2021-10-09 17:58:46 53.28MB 线性代数
1
matlab内点法代码使用单纯形法和内点法的线性优化 单纯形法 两阶段单纯形法的 Matlab 实现,使用 Bland 法则寻找枢轴。 内点法 用于线性优化的 INP 指令的 Matlab 实现 用法 代码描述和使用这两种方法的例子请参考description.pdf 。
2021-10-09 11:10:02 313KB 系统开源
1
Hundreds of coll
2021-10-08 13:00:58 60.94MB Mathmatics Linear Algeb
1
Basics of Linear Algebra for Machine Learning: Discover the Mathematical Language of Data in Python By 作者: Jason Brownlee Pub Date: 2018 ISBN: n/a Pages: 212 Language: English Format: PDF Linear algebra is a pillar of machine learning. You cannot develop a deep understanding and application of machine learning without it. In this new laser-focused Ebook written in the friendly Machine Learning Mastery style that you’re used to, you will finally cut through the equations, Greek letters, and confusion, and discover the topics in linear algebra that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover what linear algebra is, the importance of linear algebra to machine learning, vector, and matrix operations, matrix factorization, principal component analysis, and much more. This book was designed to be a crash course in linear algebra for machine learning practitioners. Ideally, those with a background as a developer. This book was designed around major data structures, operations, and techniques in linear algebra that are directly relevant to machine learning algorithms. There are a lot of things you could learn about linear algebra, from theory to abstract concepts to APIs. My goal is to take you straight to developing an intuition for the elements you must understand with laser-focused tutorials. I designed the tutorials to focus on how to get things done with linear algebra. They give you the tools to both rapidly understand and apply each technique or operation. Each tutorial is designed to take you about one hour to read through and complete, excluding the extensions and further reading. You can choose to work through the lessons one per day, one per week, or at your own pace. I think momentum is critically important, and this book is intended to be read and used, not to sit idle. I would recommend picking a schedule and sticking to it. The tutorials are divided into five parts: Foundation. D
2021-10-07 19:01:35 1.19MB Mathematics
1
著名在线课程的配套教材,亚马逊同类书籍销量第一
2021-10-07 09:19:38 8.56MB 线性代数 算法
1