不等式约束下的线性规划; 线性规划(LP),也称为线性优化,是一种在其要求由线性关系表示的数学模型中实现最佳结果(例如最大利润或最低成本)的方法。线性规划是数学规划(也称为数学优化)的一种特殊情况。更正式地说,线性规划是一种优化线性 目标函数的技术,受线性等式和线性不等式 约束。它的可行域是一个凸多面体,它是一个集合,定义为有限多个半空间的交集,每个半空间都由一个线性不等式定义。它的目标函数是定义在这个多面体上的实值仿射(线性)函数。线性规划算法在多面体中找到一个点如果存在这样的点,则此函数具有最小(或最大值)值。 出于多种原因,线性规划是一个广泛使用的优化领域。运筹学中的许多实际问题可以表示为线性规划问题。线性规划的某些特殊情况,例如网络流问题和多商品流问题,被认为足够重要,可以对专门的算法进行大量研究。许多其他类型的优化问题的算法通过将线性规划问题作为子问题来解决。从历史上看,线性规划的思想启发了优化理论的许多核心概念,例如对偶性、 分解和凸性的重要性及其概括。
2022-09-07 15:06:04 31.61MB 数值优化 线性优化 图像处理 信号处理
1
最小二乘法简单求解, 最小二乘法是回归分析中的一种标准方法,通过最小化残差的平方和(残差是观察值和模型提供的拟合值)在每个单独方程的结果中得出。 最重要的应用是数据拟合。当问题在自变量(x变量)中有很大的不确定性时,简单回归和最小二乘法就会出现问题;在这种情况下,可以考虑拟合变量误差模型所需的方法,而不是最小二乘法。 最小二乘问题分为两类:线性或普通最小二乘和非线性最小二乘,这取决于残差在所有未知数中是否是线性的。线性最小二乘问题出现在统计回归分析中;它有一个封闭形式的解决方案。非线性问题通常通过迭代细化来解决;在每次迭代中,系统都近似为线性系统,因此两种情况下的核心计算都是相似的。 多项式最小二乘法将因变量预测中的方差描述为自变量的函数以及与拟合曲线的偏差。 当观测来自一个指数族,其自然充分统计量和温和条件得到满足(例如,对于正态分布、指数分布、泊松分布和二项分布),标准化最小二乘估计和最大似然估计是相同的。[1]最小二乘法也可以作为矩估计法推导出来。 以下讨论主要是根据线性函数提出的,但最小二乘法的使用对于更一般的函数族是有效和实用的。此外,通过迭代地将局部二次近似应用
1
天线测量技术是指对天线进行测试,以确保天线符合规格或只是对其进行表征。天线的典型参数是增益、带宽、辐射方向图、波束宽度、极化和阻抗。 天线方向图是天线对从给定方向入射的平面波的响应或天线在给定方向发射的波的相对功率密度。对于倒易天线,这两个方向图是相同的。已经开发了多种天线方向图测量技术。开发的第一个技术是远场范围,其中被测天线 (AUT) 放置在范围天线的远场中。由于为大型天线创建远场范围所需的尺寸,开发了近场技术,允许在靠近天线的表面上测量场(通常是其波长的 3 到 10 倍)。然后预测该测量在无穷远处是相同的. 第三种常用方法是紧凑范围,它使用反射器在 AUT 附近创建一个看起来近似平面波的场。
1
天线阵列(或阵列天线)是一组连接的多个天线,它们作为单个天线一起工作,以发射或接收无线电波。单个天线(称为元件)通常通过馈线连接到单个接收器或发射器,馈线以特定相位关系将功率馈送到元件。每个单独天线辐射的无线电波组合和叠加,加在一起(建设性干扰)以增强在所需方向上辐射的功率,并抵消(破坏性干扰)以减少在其他方向上辐射的功率。类似地,当用于接收时,来自各个天线的单独射频电流在接收器中以正确的相位关系组合以增强从期望方向接收的信号并消除来自不期望方向的信号。更复杂的阵列天线可能具有多个发射器或接收器模块,每个模块都连接到一个单独的天线元件或一组元件。 与单个元件相比,天线阵列可以实现更高的增益(方向性),即更窄的无线电波波束。一般来说,使用的单个天线元件的数量越多,增益越高,波束越窄。一些天线阵列(如军用相控阵雷达)由数千个单独的天线组成。阵列可用于实现更高的增益、提供路径分集(也称为MIMO),从而提高通信可靠性、消除来自特定方向的 干扰、以电子方式引导无线电波束指向不同的方向,以及无线电测向(RDF)。
2022-09-07 15:06:00 31.62MB 数值优化 机器学习 深度学习 信号处理
1
光谱匹配 matlab代码
2022-09-06 16:50:38 59KB 系统开源
1
KNN分类MatLAB源代码(附介绍) MatlAB源代码+论文
2022-09-06 16:23:42 230KB KNN 分类 matlab 源代码
1
里面有许多解决tsp问题的方法源代码,比如蚁群算法、神经网络、遗传算法、模拟退火算法等等
2022-09-05 16:30:41 10KB tsp问题 matlab
1
现代雷达系统分析与设计的课程PPT和书中matlab代码
2022-09-02 09:06:20 25.96MB
1
包括了用Matlab实现的蒙特卡罗方法源代码,蒙特卡罗方法讲解的PPT,同时有使用蒙特卡罗方法的demo.
2022-08-27 11:09:26 389KB 蒙特卡罗方法
1
包括了用Matlab实现的蒙特卡罗方法源代码,蒙特卡罗方法讲解的PPT,同时有使用蒙特卡罗方法的demo.
2022-08-25 10:36:37 389KB MonteCarlo
1