最小二乘法简单求解(附matlab源代码和过程可视化,容易理解)

上传者: YINTENAXIONGNAIER | 上传时间: 2022-09-07 15:06:02 | 文件大小: 31.61MB | 文件类型: ZIP
最小二乘法简单求解, 最小二乘法是回归分析中的一种标准方法,通过最小化残差的平方和(残差是观察值和模型提供的拟合值)在每个单独方程的结果中得出。 最重要的应用是数据拟合。当问题在自变量(x变量)中有很大的不确定性时,简单回归和最小二乘法就会出现问题;在这种情况下,可以考虑拟合变量误差模型所需的方法,而不是最小二乘法。 最小二乘问题分为两类:线性或普通最小二乘和非线性最小二乘,这取决于残差在所有未知数中是否是线性的。线性最小二乘问题出现在统计回归分析中;它有一个封闭形式的解决方案。非线性问题通常通过迭代细化来解决;在每次迭代中,系统都近似为线性系统,因此两种情况下的核心计算都是相似的。 多项式最小二乘法将因变量预测中的方差描述为自变量的函数以及与拟合曲线的偏差。 当观测来自一个指数族,其自然充分统计量和温和条件得到满足(例如,对于正态分布、指数分布、泊松分布和二项分布),标准化最小二乘估计和最大似然估计是相同的。[1]最小二乘法也可以作为矩估计法推导出来。 以下讨论主要是根据线性函数提出的,但最小二乘法的使用对于更一般的函数族是有效和实用的。此外,通过迭代地将局部二次近似应用

文件下载

资源详情

[{"title":"( 1404 个子文件 31.61MB ) 最小二乘法简单求解(附matlab源代码和过程可视化,容易理解)","children":[{"title":"Readme.txt <span style='color:#111;'> 237B </span>","children":null,"spread":false},{"title":"huber_pos.m <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"rel_entr.m <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"vec.m <span style='color:#111;'> 382B </span>","children":null,"spread":false},{"title":"log_prod.m <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明