偏最小二乘回归法( PLSR:partial least squares regression):是一种新型的多元统计数据分析方法,它主要研究的是多 因变量对多自变量的回归建模,特别当各变量内部高度 线性相关时,用偏最小二乘回归法更有效。另外,偏最小二乘回归较好地解决了样本个数少于变量个数等问题。
2023-02-19 22:25:43 2.93MB PLS
1
很好的matlab写的高斯混合模型包,包括聚类回归等等。 有详细的函数功能说明。
2023-02-19 16:27:04 14.43MB 高斯混合模型 聚类 回归等等 matlab
1
乳腺癌数据集 Python 预测模型 乳腺癌数据集二分类预测 机器学习 深度学习 网格搜索+logistic逻辑回归+神经网络+SVM支持向量机+KNN 条形图折线图可视化 预测效果较好,拟合较为准确。 jupyter notebook numpy pandas matplotlib sklearn 数据分析 数据挖掘
1
原始数据在这里 1.观察数据 首先,用Pandas打开数据,并进行观察。 import numpy import pandas as pd import matplotlib.pyplot as plt %matplotlib inline data = pd.read_csv('Folds5x2_pp.csv') data.head() 会看到数据如下所示: 这份数据代表了一个循环发电厂,每个数据有5列,分别是:AT(温度), V(压力), AP(湿度), RH(压强), PE(输出电力)。我们不用纠结于每项具体的意思。 我们的问题是得到一个线性的关系,对应PE是样本输出,而AT/V/
2023-02-17 12:29:32 147KB data mp python
1
======简单的雨量预报====== 该项目的目标是根据几个参数来预测明天的天气会下雨还是不出现默认值。 由于我不是气象和气候领域的专家,因此,为了防止在选择阈值时出现偏差,我将使该应用程序的结果除二进制分类外还添加一定百分比的默认值。 有了这个简单的应用程序,人们将可以更轻松地预测明天是否会下雨。 该数据集来自澳大利亚各地多个地方的每日气象观测资料,该资料集是从澳大利亚联邦气象局获得的,经过处理后创建了这个非常大的样本数据集,用于说明分析。 如果要查看有关此项目的更多详细信息,请单击下面的链接: 应用链接= Linkedin =
2023-02-14 21:45:00 7.12MB JupyterNotebook
1
薪水预测-烧瓶部署 这是一个演示项目,用于详细说明如何使用Flask API在生产环境中部署机器学习模型 先决条件 您必须安装Scikit Learn,Pandas(用于机器学习模型)和Flask(用于API)。 项目结构 该项目包括四个主要部分: model.py-这包含我们的机器学习模型的代码,以预测hiring.csv文件中训练型数据上缺少的员工薪水。 app.py-包含Flask API,这些API通过GUI接收员工详细信息,根据我们的模型计算推定值并返回。 模板-此文件夹包含HTML模板,允许用户输入员工详细信息并显示预测的员工薪水。 运行项目 确保您在项目主目录中。 通过运行以下命令来创建机器学习模型- python model.py 这会将我们模型的序列化版本创建到文件model.pkl中 使用以下命令运行app.py以启动Flask API python app.
2023-02-10 19:53:45 6KB HTML
1
Python 股票数据分析 tushare获取上证指数和各股票的数据 各类指标统计散点图折线图线性回归建模 三因子模型R market SMB HML jupyter notebook numpy pandas statmodels matplotlib 数据分析 数据挖掘 机器学习 人工智能
2023-02-09 17:04:30 3.84MB Python 股票 数据分析
1
一维卷积神经网络,cnn,回归预测,多输入,单输出,基于matlab,替换数据和特征个数即可,拿来直接使用。分为清空环境变量、导入数据、划分训练集和测试集、数据平铺、构造网络结构、参数设置、训练模型、均方根误差、绘制网络分析图、绘图、相关指标计算等几个模块,各个模块均标有备注,直接替换数据即可使用,用于新手学习深度学习算法非常好
1
matlab如何敲代码PyGPML Carl Rasmussen和Hannes Nickisch的Python版本,用于高斯过程。 他们的代码可以在这里找到: 到目前为止,此仓库正在从上方实现原始MATLAB代码的一小部分。 它主要用高斯噪声实现高斯过程,从而使最大似然积分可以精确地解析解决。 相应的功能在inferences.py中给出。 有一些标准的内置内核,但是此代码还实现了Andrew G. Wilson和Ryan P.Adams在以下参考文献中给出的用于模式识别的光谱混合(SM)内核(此代码的原始动机)。 : [1] [2] 此处提供了此工作的资源页面: 简而言之,它使用混合了高斯的协方差核函数来实现典型的高斯过程: k(t)= sum_ {q = 1} ^ Q w_q prod_ {p = 1} ^ P exp(-2pi ^ 2 t_p ^ 2 v_ {p,q} ^ 2)cos(2pi t_p m_ {p,q} ) 其中t = x-x',q =混合物中Q个高斯中的第i个,p = P个维度中的第j个,w =第q个高斯混合物的权重,v2 = v ^ 2 = std。 偏差,m
2023-01-31 15:36:58 37KB 系统开源
1
其中关于PSO部分的书写,已经进行了封装,可以进行通用,用于其他模型的优化。该资源实例主要用于优化支持向量机回归算法中的惩罚参数C、损失函数epsilon、核系数gamma进行调参
1