构造了基于小波系数的多变点检测算法,该算法可应用于非参数回归模型多变点检测.渚河水文时间序列实例分析结果表明,检测的结果与实际情况相符合.该方法不需要对时间序列做任何参数化的假定便能方便地检测出变点的位置,同时还能够给出变点个数的估计.
2023-02-24 12:11:42 968KB 工程技术 论文
1
用Java完成多元线性回归相关算法编程。资源是从百度文库上下载的https://wenku.baidu.com/view/070d30eb988fcc22bcd126fff705cc1755275f61.html。
2023-02-24 11:49:42 146KB java 多元线性回归
1
在工厂和工作场所,有很多情况下,人们可以通过视觉读取仪表值,但越是连续执行,工人的负担就越大,并且可能会发生人为错误。有许多基于规则的图像处理工作,但要创建可在任何环境中使用的稳健算法并不容易。 在此示例代码中,相机获取的仪表值是使用深度学习来预测的。这是自定义用于回归图像判断的训练过的 CNN (AlexNet) 并将仪表值(连续值)应用于读数的示例。 AlexNet 的训练网络可在此处获得。 https://jp.mathworks.com/matlabcentral/fileexchange/59133-deep-learning-toolbox-model-for-alexnet-network [Keyward]图像处理、计算机视觉、深度学习、机器学习、CNN、IPCV演示、深度学习、机器学习、回归回归、迁移学习
2023-02-22 17:05:36 5.52MB matlab
1
The dataset contains Number of Air passengers of each month from the year 1949 to 1960. We can use this data to forecast the future values and help the business. https://www.kaggle.com/datasets/abhishekmamidi/air-passengers
2023-02-22 16:38:13 27.66MB python
1
简单实现高斯过程回归的问题,利用python语言做了一个简要的说明。
2023-02-21 16:45:06 4KB gpr_python 高斯过程 高斯过程回归
偏最小二乘回归法( PLSR:partial least squares regression):是一种新型的多元统计数据分析方法,它主要研究的是多 因变量对多自变量的回归建模,特别当各变量内部高度 线性相关时,用偏最小二乘回归法更有效。另外,偏最小二乘回归较好地解决了样本个数少于变量个数等问题。
2023-02-19 22:25:43 2.93MB PLS
1
很好的matlab写的高斯混合模型包,包括聚类回归等等。 有详细的函数功能说明。
2023-02-19 16:27:04 14.43MB 高斯混合模型 聚类 回归等等 matlab
1
乳腺癌数据集 Python 预测模型 乳腺癌数据集二分类预测 机器学习 深度学习 网格搜索+logistic逻辑回归+神经网络+SVM支持向量机+KNN 条形图折线图可视化 预测效果较好,拟合较为准确。 jupyter notebook numpy pandas matplotlib sklearn 数据分析 数据挖掘
1
原始数据在这里 1.观察数据 首先,用Pandas打开数据,并进行观察。 import numpy import pandas as pd import matplotlib.pyplot as plt %matplotlib inline data = pd.read_csv('Folds5x2_pp.csv') data.head() 会看到数据如下所示: 这份数据代表了一个循环发电厂,每个数据有5列,分别是:AT(温度), V(压力), AP(湿度), RH(压强), PE(输出电力)。我们不用纠结于每项具体的意思。 我们的问题是得到一个线性的关系,对应PE是样本输出,而AT/V/
2023-02-17 12:29:32 147KB data mp python
1
======简单的雨量预报====== 该项目的目标是根据几个参数来预测明天的天气会下雨还是不出现默认值。 由于我不是气象和气候领域的专家,因此,为了防止在选择阈值时出现偏差,我将使该应用程序的结果除二进制分类外还添加一定百分比的默认值。 有了这个简单的应用程序,人们将可以更轻松地预测明天是否会下雨。 该数据集来自澳大利亚各地多个地方的每日气象观测资料,该资料集是从澳大利亚联邦气象局获得的,经过处理后创建了这个非常大的样本数据集,用于说明分析。 如果要查看有关此项目的更多详细信息,请单击下面的链接: 应用链接= Linkedin =
2023-02-14 21:45:00 7.12MB JupyterNotebook
1