模仿学习赛车 这个精益的存储库具有从头开始训练和评估赛车Tensorflow模型所需的所有工具! 实际上,仅需5集(不到5分钟)即可生成足够的数据以使模型能够胜任! 注意:上面显示的游戏玩法是在5集训练模型后得出的。 使用更多的训练数据,它可以表现得更好! 此外,它还具有像素化功能,因此您可以看到模型在播放时所看到的效果(96 x 96)。
2023-03-02 16:58:20 12.58MB JupyterNotebook
1
自主驾驶车辆的深度模仿学习 自动驾驶汽车已经引起了学术界(例如牛津,麻省理工学院)和工业界(例如Google,特斯拉)的极大兴趣。 但是,由于普遍的知识,我们发现直接实现全自动驾驶(SAE 5级)非常困难。 为了解决这个问题,深度模仿学习是一种有前途的解决方案,可以从人类的演示中学习知识。 在这个项目中,我们研究了如何使用深度模仿学习来实现车辆动态控制(例如转向角,速度)。 我们使用了Udacity( )提供的数据集和模拟器以及现实世界中的comma.ai数据集。
2023-03-02 16:47:03 14KB Python
1
Chatbot_CN 基于深度学习、强化学习、对话引擎的多场景对话机器人 • • • • • • • • Made by Xu • :globe_with_meridians: 项目说明     Chatbot_CN 是一个基于第三代对话系统的多轮对话机器人项目,旨在于开发一个结合规则系统、深度学习、强化学习、知识图谱、多轮对话策略管理的 聊天机器人,目前随着时间的慢慢发展,从最初的一个 Chatbot_CN 项目,发展成了一个 Chatbot_* 的多个项目。目前已经包含了在多轮任务型对话的场景中,基于话术(Story)、知识图谱(K-G)、端到端对话(E2E)。目的是为了实现一个可以快速切换场景、对话灵活的任务型机器人。 同时,Chatbot_CN 不仅仅是一个对话系统,而是一套针对客服场景下的完整人工智能解决方案。对话是解决方案的核心和最重要一环,但不仅限于对话,还包括智能决策
1
深度照明器 Deep Illuminator是设计用于图像重新照明的数据增强工具。 它可用于轻松高效地生成单个图像的多种照明方式。 它已通过多个数据集和模型进行了测试,并已成功改善了性能。 它具有使用创建的内置可视化工具,以预览如何对目标图像进行照明。 增强实例 用法 使用此工具的最简单方法是通过Docker Hub: docker pull kartvel/deep-illuminator 可视化器 有了Deep Illuminator图像后,请运行以下命令以启动可视化器: docker run -it --rm --gpus all \ -p 8501:8501 --entrypoint streamlit \ kartvel/deep-illuminator run streamlit/streamlit_app.py 您将可以在localhost:8501上与它进行交互。
2023-03-02 10:34:05 5.22MB deep-learning pytorch illumination augmentations
1
Deep adversarial metric learning for cross-modal retrieval
2023-03-01 16:18:18 1.29MB 研究论文
1
The Elements of Statistical Learning 本资源转载自网络,如有侵权,请联系上传者或csdn删除
2023-02-27 10:00:14 7.91MB ESL Deep Learnin
1
该资源包涵这本书的英文版,中文版和课本中的代码。本资源都是高清版本
2023-02-26 10:38:17 77.3MB 机器学习 深度学习 实践教程
1
无监督距离度量学习工具包:Matlab中无监督距离度量学习工具包
2023-02-25 22:11:09 3.56MB matlab toolkits metric-learning MATLABMATLAB
1
Deep Learning Toolbox用户指南,欢迎下载
2023-02-25 20:13:22 32.79MB MartinT.Hagan
1
Gluon CV工具包 | | | | GluonCV提供了计算机视觉中最先进的(SOTA)深度学习模型的实现。 它是为工程师,研究人员和学生设计的,用于基于这些模型快速制作原型产品和研究思路。 该工具包提供四个主要功能: 训练脚本以重现研究论文中报告的SOTA结果 同时支持PyTorch和MXNet 大量的预训练模型 精心设计的API,可大大降低实施复杂性 社区支持 演示版 在或检查高清视频。 支持的应用 应用 插图 可用型号 识别图像中的物体。 50多个模型,包括 , , , ,... 用它们的检测多个对象图像中的边界框。 , , 关联图像的每个像素带有分类标签。 , , , , , , 检测物体并关联对象区域内的每个像素都有一个实例标签。 检测人体姿势从图像。 认识人类的行为在视频中。 MXNet: , , , , , , ,, PyTorch: , , , ,, , , 预测深度图从图像。 生成视觉欺骗性图像 , , 重新识别场景中的行人 安装 GluonCV构建在MXNe
1