Wienert S,Heim D,Kotani M,Lindequist B,Stenzinger A,Ishii M,Hufnagl P,Beil M,Dietel M,Denkert C,Klauschen F. CognitionMaster:基于对象的图像分析框架。 诊断病理学2013,8:34
2025-04-05 18:48:52 937KB 开源软件
1
CSDN Matlab武动乾坤上传的资料均有对应的代码,代码均可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 图像修复: 维纳滤波、最小二乘、模糊图像复原、中值、均值图像恢复、全变分TV+curvelet变换图像修复、自适应空间滤波图像修复
2025-04-05 13:29:30 14KB matlab
1
**图像分割:Pytorch实现UNet++进行医学细胞分割** 图像分割是计算机视觉领域中的一个核心任务,它涉及将图像划分为多个具有不同语义意义的区域或对象。在医学成像中,图像分割尤其重要,因为它可以帮助医生识别和分析病灶、细胞结构等。PyTorch是一个流行的深度学习框架,其强大的灵活性和易用性使其成为实现复杂网络结构如UNet++的理想选择。 **UNet++简介** UNet++是一种改进的UNet架构,由Zhou等人于2018年提出,旨在解决UNet在处理重叠边界区域时的局限性。UNet++通过引入一系列密集的子网络连接,提高了特征融合的效率,从而在像素级别的预测上表现出更优的性能。这种设计特别适合对细胞、组织等微小结构的高精度分割。 **PyTorch实现** 在PyTorch中实现UNet++通常包括以下几个关键步骤: 1. **数据集处理**(dataset.py):你需要准备训练和验证数据集,这通常包括预处理图像和相应的标注图。`dataset.py`中会定义数据加载器,以批处理的方式提供图像和标签。 2. **模型结构**(archs.py):UNet++的结构由编码器(通常是预训练的卷积神经网络如ResNet)和解码器组成,它们之间通过跳跃连接和密集子网络连接。`archs.py`文件将定义UNet++的网络结构。 3. **训练过程**(train.py):在`train.py`中,你会设置训练参数,如学习率、优化器、损失函数(例如Dice损失或交叉熵损失)、训练迭代次数等,并实现训练循环。 4. **验证与评估**(val.py):验证脚本`val.py`用于在验证集上评估模型性能,通常会计算一些度量标准,如Dice系数或IoU(交并比),以衡量分割结果的质量。 5. **辅助函数**(losses.py, metrics.py, utils.py):这些文件包含损失函数实现、评估指标和一些通用工具函数,如保存模型、可视化结果等。 6. **命令行参数**(cmd.txt):`cmd.txt`可能包含运行训练或验证脚本时的命令行参数,比如指定设备(GPU/CPU)、数据路径等。 7. **开发环境配置**(.gitignore, .vscode):`.gitignore`文件定义了在版本控制中忽略的文件类型,`.vscode`可能是Visual Studio Code的配置文件,用于设置代码编辑器的偏好。 在实际应用中,你还需要考虑以下几点: - **数据增强**:为了增加模型的泛化能力,通常会在训练过程中使用数据增强技术,如旋转、翻转、缩放等。 - **模型优化**:根据任务需求调整网络结构,例如添加更多层、调整卷积核大小,或者采用不同的损失函数来优化性能。 - **模型部署**:训练完成后,将模型部署到实际应用中,可能需要将其转换为更轻量级的形式,如ONNX或TensorRT,以适应硬件限制。 通过理解并实现这个项目,你可以深入掌握基于PyTorch的深度学习图像分割技术,尤其是UNet++在医学细胞分割领域的应用。同时,这也会涉及到数据处理、模型构建、训练策略和性能评估等多个方面,对提升你的深度学习技能大有裨益。
2025-04-05 10:29:58 40.38MB pytorch unet 图像分割
1
含CubeMX所构建STM32F4工程(可直接编译运行)、网络训练模型和Cifar-10数据集。
2025-04-04 15:58:21 257.6MB stm32 神经网络 CubeMX keras
1
DICOM文件打开软件,DICOM图像文件信息解析与图像显示。
2025-04-03 17:15:33 11.76MB DICOM 医学图像浏览 DICOM解析
1
在本文中,我们将深入探讨如何在Microsoft Foundation Class (MFC) 库中使用PNG图像来创建具有透明效果的按钮,并且会提供一个基于VS2015的完整工程示例。MFC是Microsoft为Windows应用程序开发提供的C++类库,它简化了Windows API的使用,使得开发者能够更方便地构建桌面应用程序。 PNG(Portable Network Graphics)是一种支持透明度的位图格式,通过使用Alpha通道,可以实现半透明和完全透明的效果。在MFC应用中,我们通常使用CBitmap和CDC类来处理图像,但它们并不直接支持PNG的透明特性。因此,我们需要引入额外的库,如libpng或GDI+,来解析PNG文件并利用其透明度信息。 1. **libpng库集成**:在MFC项目中,首先需要链接libpng库。这通常涉及到下载libpng源码,编译为动态或静态库,然后将库文件添加到项目的链接器设置中。同时,还需将对应的头文件路径加入到项目配置中。 2. **解析PNG图像**:使用libpng库提供的API,例如`png_create_read_struct()`和`png_init_io()`,来初始化读取结构并设置输入流。接着调用`png_read_image()`和`png_read_end()`读取图像数据。 3. **创建设备上下文对象**:在MFC中,CDC类代表设备上下文,用于图形绘制。创建一个CDC实例,并使用`CreateCompatibleDC()`创建一个兼容的设备上下文,以便绘制到内存位图。 4. **加载PNG到内存位图**:利用libpng解析出的像素数据,创建一个CBitmap对象,并将其绑定到兼容设备上下文。这个过程可能需要一些转换,因为MFC的CBitmap不直接支持Alpha通道,所以可能需要手动处理Alpha值。 5. **处理按钮状态**:在MFC中,按钮的状态包括普通、鼠标悬停(高亮)和禁用(灰度)。对于高亮状态,可以创建一个CBrush对象,使用`SetBkColor()`设置为按钮的高亮颜色,然后使用`CreateHatchBrush()`创建一个刷子,绘制高亮效果。对于灰度效果,可以使用算法将RGB颜色转换为灰度。 6. **重绘按钮**:在OnPaint()函数中,创建一个PAINTSTRUCT结构,然后调用BeginPaint()和EndPaint()进行安全的绘画。使用SelectObject()选择CBitmap到兼容设备上下文,根据按钮状态选择合适的图像,然后使用DrawState()函数绘制按钮。DrawState()函数可以自动处理按钮的各种状态,如按下、鼠标悬停等。 7. **事件处理**:为按钮添加消息处理函数,例如ON_WM_LBUTTONDOWN()、ON_WM_LBUTTONUP()和ON_WM_MOUSEMOVE(),根据鼠标事件更新按钮状态。 8. **资源管理**:在程序运行结束后,记得释放所有分配的资源,如CBitmap、CDC和设备上下文。 在提供的"PNG透明按钮工程"压缩包中,应包含以下组件: - 工程文件(.vcxproj) - 源代码文件(.cpp和.h) - libpng库文件(.lib和.dll) - 示例PNG图像文件 - 资源文件(.rc) 通过阅读和分析这些文件,你可以理解如何在MFC中实现PNG透明按钮,并将其应用到自己的项目中。这个示例是一个很好的起点,展示了如何将现代图像格式与MFC的经典API结合,为Windows应用程序增添更多视觉吸引力。
2025-04-03 11:44:09 1.01MB
1
每年有超过 400,000 例新发肾癌病例,手术是其最常见的治疗方法。由于肾脏和肾脏肿瘤形态的多样性,目前人们对肿瘤形态如何与手术结果相关 ,以及开发先进的手术计划技术 非常感兴趣。自动语义分割是这些工作的一个很有前途的工具,但形态异质性使其成为一个难题。 这一挑战的目标是加速可靠的肾脏和肾脏肿瘤语义分割方法的发展。我们已经为 300 名在我们机构接受部分或根治性肾切除术的独特肾癌患者的动脉期腹部 CT 扫描生成了真实语义分割。其中 210 个已发布用于模型训练和验证,其余 90 个将保​​留用于客观模型评估。
2025-04-01 19:37:00 33.12MB 计算机视觉 unet python 图像分割
1
在计算机视觉领域,畸变矫正是一项重要的预处理技术,它用于消除由于镜头光学特性或相机成像系统导致的图像扭曲。Halcon,作为一款强大的机器视觉软件,提供了完整的畸变矫正解决方案。本压缩包文件围绕“Halcon棋盘格畸变矫正”主题,包括了标定图像、测试图像以及相应的Halcon程序,旨在帮助用户理解和实现这一过程。 我们要理解畸变矫正的基本原理。在实际应用中,摄像头拍摄的图像会因为镜头的非理想特性(如径向畸变和切向畸变)而产生形变。径向畸变表现为图像远离中心的部分呈现出桶形或枕形扭曲,而切向畸变则会在图像边缘产生斜线偏移。为了解决这个问题,我们需要进行镜头畸变校正,通常采用棋盘格图案进行标定。 棋盘格标定是畸变矫正的关键步骤。在这个过程中,使用具有规则间隔的黑白相间的棋盘格图案,通过拍摄多个不同角度的棋盘格图像,可以计算出相机的内参矩阵和畸变系数。Halcon提供的棋盘格检测函数可以自动找到棋盘格的角点,然后通过这些角点的精确位置来估计相机参数。 完成标定后,我们可以使用得到的畸变系数对新的图像进行矫正。Halcon提供了`distortion_correction`操作符,它接受标定后的参数和待矫正图像,输出一个已经消除畸变的新图像。这个操作符可以有效地应用于检测、识别等后续视觉任务,提高结果的准确性。 在压缩包中的“测试图像”部分,你可以使用这些图像来验证畸变矫正的效果。通过对比矫正前后的图像,可以直观地看到畸变矫正的效果,这对于调整参数和优化矫正过程非常有帮助。 至于Halcon程序,它们通常包含了执行棋盘格标定、计算畸变系数以及进行畸变矫正的代码。这些程序可以帮助开发者更好地理解Halcon如何处理畸变矫正的流程,并且可以作为模板,快速应用到自己的项目中。学习和理解这些程序,有助于提升在机器视觉领域的实践能力。 总结来说,Halcon的棋盘格畸变矫正功能是通过标定图像、计算畸变系数和执行矫正操作来实现的。利用提供的标定图像和测试图像,结合Halcon程序,用户可以深入理解并掌握这一过程,从而在实际项目中实现更准确的图像处理。
2025-04-01 16:14:18 142.05MB 畸变矫正
1
内容包含1000张气泡图像和对应的YOLO标注txt文件,在机器学习和计算机视觉领域,YOLO(You Only Look Once)是一种流行的实时对象检测系统,它能够在单个前向传播中同时预测对象的边界框和类别概率。当处理包含气泡图像的数据集时,使用YOLO进行标注和训练可以实现对气泡的自动检测和定位。YOLO(You Only Look Once)是一种流行的实时目标检测算法,由美国研究人员约瑟夫·雷德蒙德·斯塔克(Joseph Redmon)在2016年提出。YOLO算法的主要特点是将目标检测任务转化为单个神经网络的回归问题,从而实现了高效的实时目标检测。YOLO算法的主要思想是将输入图像划分为S×S个网格单元,每个网格单元负责预测B个边界框(Bounding Box)以及这些边界框的置信度和类别。具体来说,每个边界框包含5个预测值,分别为边界框的中心坐标(x, y)、边界框的宽度和高度(w, h),以及一个置信度(c),置信度表示边界框内存在目标的可能性以及边界框与真实目标框的重合度(IOU,Intersection Over Union)。 在YOLO中,每个网格单元只负责
2025-03-31 23:58:31 408.06MB 数据集 神经网络 YOLO
1
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-03-29 21:10:08 3.87MB matlab
1