针对基于深度学习的传统方法对于次显著细节信息关注不足的问题,提出一种基于多尺度注意力机制的多分支网络来统筹图像的显著信息及次显著信息。首先,将多尺度特征融合方法(MSFF)与注意力机制相结合,设计了一个多尺度注意力模块(MSA),使得网络可以根据输入信息自适应地调节感受野大小,实现了对于不同尺度信息的充分利用。其次,建立一个多分支网络,实现对于全局特征和多元局部特征的协调统一,并利用多尺度注意力模块,分别实现对于全局显著信息及次显著局部细节信息的加权强化,得到更具判别性的特征用于最终的识别。实验结果表明,本文所设计的网络在多个数据集上都取得了较好的表现。
1