知识图谱,事理图谱,实体链接
2021-08-03 22:08:46 1.41MB 知识图谱,事理图谱,实体链接
1
时序数据存在时序性,并且其短序列的特征存在重要程度差异性。针对时序数据特征,提出一种基于注意力机制的卷积神经网络(CNN)联合长短期记忆网络(LSTM)的神经网络预测模型,融合粗细粒度特征实现准确的时间序列预测。该模型由两部分构成:基于注意力机制的CNN,在标准CNN网络上增加注意力分支,以抽取重要细粒度特征;后端为LSTM,由细粒度特征抽取潜藏时序规律的粗粒度特征。在真实的热电联产供热数据上的实验表明,该模型比差分整合移动平均自回归、支持向量回归、CNN以及LSTM模型的预测效果更好,对比目前企业将预定量作为预测量的方法,预测缩放误差平均值(MASE)与均方根误差(RMSE)指标分别提升了89.64%和61.73%。
2021-07-31 11:17:18 914KB 论文研究
1
针对基于深度学习的传统方法对于次显著细节信息关注不足的问题,提出一种基于多尺度注意力机制的多分支网络来统筹图像的显著信息及次显著信息。首先,将多尺度特征融合方法(MSFF)与注意力机制相结合,设计了一个多尺度注意力模块(MSA),使得网络可以根据输入信息自适应地调节感受野大小,实现了对于不同尺度信息的充分利用。其次,建立一个多分支网络,实现对于全局特征和多元局部特征的协调统一,并利用多尺度注意力模块,分别实现对于全局显著信息及次显著局部细节信息的加权强化,得到更具判别性的特征用于最终的识别。实验结果表明,本文所设计的网络在多个数据集上都取得了较好的表现。
2021-07-29 10:16:51 5.69MB 图像处理 深度学习 行人重识 注意力机
1
行业分类-物理装置-基于发散-聚合注意力的图像描述方法.zip
为提升水下图像的增强效果,提出了一种基于金字塔注意力机制和生成对抗网络(GAN)的水下图像增强算法。它将生成对抗网络作为基本架构,生成网络采用编码解码结构并引入特征金字塔注意力模块,多尺度金字塔特征与注意力机制的结合可以捕获更丰富的高级特征以提升模型性能;判别网络采用类似马尔科夫判别器的结构。此外,通过构建包含全局相似性、内容感知和色彩感知的多项损失函数,使增强后的图像与参考图像的结构、内容和色彩保持一致。实验结果表明,所提算法增强的水下图像在清晰度、颜色校正和对比度上都有所提升。其中,在SSIM、UIQM和IE指标上的平均值分别为0.7418、2.9457和4.6925。在主观感知和客观评价指标上,所提算法的实验结果均优于对比算法。
1
阿斯泰格 基于注意力的时空图卷积网络的交通流量预测(ASTGCN) 参考 数据集 我们在来自加利福尼亚的两个高速公路交通数据集PeMSD4和PeMSD8上验证了我们的模型。 这些数据集由Caltrans绩效评估系统( )( )每30秒实时收集一次。 交通数据会从原始数据每隔5分钟汇总一次。 该系统在加州主要都会区的高速公路上部署了39,000多台探测器。 有关传感器测站的地理信息记录在数据集中。 我们的实验中考虑了三种流量度量,包括总流量,平均速度和平均占用率。 我们提供两个数据集:PEMS-04,PEMS-08 PEMS-04: 307个探测器2018年1月至2月3个特点:流动,占据,速度。 PEMS-08: 170个检测器2016年7月至8月3个特点:流动,占据,速度。 要求 python> = 3.5 mxnet> = 1.3.0 mxboard 科学的 张
2021-07-11 09:49:20 51.94MB 附件源码 文章源码
1
基于BLSTM和注意力机制的电商评论情感分类模型.pdf
2021-07-10 09:02:20 1.57MB 电商平台 电商系统 行业数据 数据分析
人像因素对消费者注意力和购买意愿的影响——基于电商网页的眼动追踪实验研究.pdf
2021-07-10 09:01:52 2.16MB 电商平台 电商系统 行业数据 数据分析
注意力记忆力训练-猴噗教具.pdf
2021-07-09 12:00:05 6.36MB 1
图像处理源码-多尺度空间注意力的语义分割
2021-07-07 19:02:42 1.22MB 图像处理 人工智能 CV