上传者: 38645434
|
上传时间: 2021-07-19 10:52:59
|
文件大小: 49KB
|
文件类型: PDF
为提升水下图像的增强效果,提出了一种基于金字塔注意力机制和生成对抗网络(GAN)的水下图像增强算法。它将生成对抗网络作为基本架构,生成网络采用编码解码结构并引入特征金字塔注意力模块,多尺度金字塔特征与注意力机制的结合可以捕获更丰富的高级特征以提升模型性能;判别网络采用类似马尔科夫判别器的结构。此外,通过构建包含全局相似性、内容感知和色彩感知的多项损失函数,使增强后的图像与参考图像的结构、内容和色彩保持一致。实验结果表明,所提算法增强的水下图像在清晰度、颜色校正和对比度上都有所提升。其中,在SSIM、UIQM和IE指标上的平均值分别为0.7418、2.9457和4.6925。在主观感知和客观评价指标上,所提算法的实验结果均优于对比算法。