基于波士顿房价数据集,分别使用LinearRegressio,Lasso,ridge, Elastic net线性回归模型进行房价预测,对比模型优劣。适用于建模竞赛的模型选择与调参。 可在博主的机器学习算法专栏中找到对代码的逐句讲解。
2023-03-19 21:28:16 2KB 线性回归 机器学习
1
该代码使用来自社区大学的数据集,其中包含大量噪音。 由于数据集中的噪声,代码是一个很好的例子,有时线性回归不是很有用,但它是一个基线分类模型。 我确保它不会为我使用的数据集过度拟合或欠拟合数据。 根据正在使用的数据集,需要增加或减少 theta 参数,并且还必须调整参数的多项式性质。 这个程序的想法是它很好地演示了梯度下降,并且在分类方面做得很好。
2023-03-19 17:46:06 2KB matlab
1
AI,ML,gradient descent,paper,matlab AI,ML,gradient descent,paper,matlab
2023-03-19 16:40:53 1.16MB gradient descent
1
学了一学期的matlab,本来想全部的资源上传的,只是传不上去,所以先传点回归分析与参数估计的
2023-03-15 21:58:31 80KB matlab
1
本文实例讲述了Python实现的逻辑回归算法。分享给大家供大家参考,具体如下: 使用python实现逻辑回归 Using Python to Implement Logistic Regression Algorithm 菜鸟写的逻辑回归,记录一下学习过程 代码: #encoding:utf-8 Author: njulpy Version: 1.0 Data: 2018/04/10 Project: Using Python to Implement LogisticRegression Algorithm import numpy as np import
2023-03-15 18:33:13 120KB c csv csv文件
1
正交回归和一般最小二乘回归的几何误差分析,胡明晓,崔元敏,线性回归也称为最小二乘拟合。一般最小二乘回归的目标函数只考虑一个方向的扰动,采用基于几何距离的正交回归能克服固定单方向最
2023-03-15 09:45:47 533KB 正交回归
1
主成分回归代码matlab及示例机器学习(Coursera) 这是我对Andrew Ng教授的所有机器学习(Coursera)编程任务和测验的解决方案。 完成本课程后,您将对机器学习算法有一个广泛的了解。 首先尝试自己解决所有任务,但是如果您陷入困境,请随时浏览代码。 内容 讲座幻灯片 编程分配的解决方案 解决测验 斯坦福大学的吴安德(Andrew Ng) 第一周 视频:简介 测验:简介 视频:具有一个变量的线性回归 测验:具有一个变量的线性回归 第二周 视频:具有多个变量的线性回归 测验:具有多个变量的线性回归 视频:八度/ Matlab教程 测验:八度/ Matlab教程 编程分配:线性回归 第三周 视频:Logistic回归 测验:逻辑回归 视频:正则化 测验:正则化 编程分配:逻辑回归 第四周 视频:神经网络:表示 测验:神经网络:表示形式 编程作业:多类分类和神经网络 第五周 视频:神经网络:学习 测验:神经网络:学习 编程作业:神经网络学习 第六周 视频:应用机器学习的建议 测验:应用机器学习的建议 视频:编程分配:正则线性回归和偏差/方差 机器学习系统设计 测验:机器学习
2023-03-14 10:59:50 73.39MB 系统开源
1
多用户传输波束成形-线性回归-凸面优化教程:在这项工作中,我们使用MATLAB中的凸优化包来实现多用户传输波束成形问题和线性回归。 这是HKUST的ELEC 5470凸优化的作业2
2023-03-13 15:16:07 415KB matlab linear-regression cvx convex-optimization
1
SalaryPrediction:这是使用线性回归的薪资预测模型
2023-03-11 22:20:34 15KB JupyterNotebook
1
使用梯度下降的方法进行逻辑回归实战: 问题说明: 这里将建立一个逻辑回归模型来预测一个学生是否被大学录取。 假设你是一个大学的管理员,你想根据两次考试的结果来决定每个申请人的录取机会,你有以前的申请人的历史数据。可以用历史数据作为逻辑回归的训练集。对于每一个样本,有两次考试的申请人的成绩和录取决定。建立一个分类模型,根据考试成绩估计入学概率。 数据链接: 链接:https://pan.baidu.com/s/1-pjwe1ogk30WpzN4Qg1NZA 密码:wqmt 完整代码实现如下: import numpy as np import pandas as pd import matpl
1