KittiBox KittiBox是用于在Kitti上训练模型FastBox的脚本的集合。 有关Fastbox的详细说明,请参见我们的。 FastBox旨在以很高的推理速度存档高检测性能。 在Kitti数据上,该模型的吞吐量为28 fps(36毫秒),是FasterRCNN的两倍以上。 尽管FastBox速度惊人,但其性能却明显优于Faster-RCNN。 任务 中等 简单 硬 速度(毫秒) 速度(fps) 快速盒 86.45% 92.80% 67.59% 35.75毫秒 27.97 更快的RCNN 78.42% 91.62% 66.85% 78.30毫秒 12.77
2023-03-10 19:58:40 21.33MB computer-vision deep-learning tensorflow detection
1
主成分回归代码matlab及示例传统转学 这是传统迁移学习技术的演示。 实例加权方法 1. TrAdaboost。 参考号促进迁移学习, ICML 2007。
2.回归Tradaboost。 在分类的情况下,权重乘以coef.^(0 or 1). 在回归Tradaboost中,绝对误差被用作幂项。 3.实例加权内核岭回归 实例加权核岭回归, 参考: Jochen Garcke,重要性加权归纳迁移学习回归 在这种情况下,所有源域数据都被标记,目标域中的一小部分也被标记。 在这里,我们将此部分称为“辅助数据”。 其余目标域数据未标记,称为“测试数据”。 在此方法中,基于[源数据+辅助数据]计算源实例的权重(alpha),并将其应用于源实例。 源集有n个实例,辅助集有m个实例。 该方法包含3个步骤: 训练了内核岭回归(rbf内核)模型,并在源数据上进行了测试。 获得双重经济效率a(n * 1)。 此a用于计算权重alpha。 代替在每个实例上应用标量,这里作者使用一种rbf距离的形式: Alpha是变量,而不是w (x,y) 成本函数是加权误差,带有α上的调节项。 Alpha应该大
2023-03-10 19:12:47 8.35MB 系统开源
1
matlab中存档算法代码这是什么? 该项目包含脚本,用于通过,和复制论文中的实验。 出现在“ IEEE信号处理事务”中。 另请参阅相关 利益问题 简而言之,稀疏线性逆问题是通过利用信号具有很多零的知识来估计来自间接,嘈杂,不确定性测量的未知信号。 我们比较了针对此问题的各种迭代算法方法,并探讨了它们如何从循环展开和深度学习中受益。 概述 包含的脚本 通常是用python编写的,并且require, 与GPU搭配使用效果最佳, 根据需要生成综合数据, 已知可与CentOS 7 Linux和TensorfFlow 1.1一起使用, 有时是用octave / matlab .m文件编写的。 如果您只是在寻找VAMP的实现... 您可能更喜欢/ code / VAMP /中的Matlab代码或中的python代码。 文件说明 针对稀疏线性问题y = Ax + w,创建具有(y,x,A)的numpy存档(.npz)和matlab(.mat)文件。 这些文件对于任何深度学习脚本并不是真正必需的,这些脚本会按需生成问题。 提供它们只是为了更好地理解实验中使用的特定实现。 使用save_proble
2023-03-10 18:56:13 192.17MB 系统开源
1
流行的无模型强化学习算法 PyTorch和Tensorflow 2.0在Openai体育馆环境和自行实现的Reacher环境中均实现了最新的无模型强化学习算法。 算法包括软参与者关键(SAC),深度确定性策略梯度(DDPG),双延迟DDPG(TD3),参与者关键(AC / A2C),近端策略优化(PPO),QT-Opt(包括交叉熵( CE)方法) , PointNet ,运输商,循环策略梯度,软决策树等。 请注意,此存储库更多是我在研究和实施期间实施和测试的个人算法集合,而不是正式的开放源代码库/软件包以供使用。 但是,我认为与他人分享它可能会有所帮助,并且我希望对实现进行有益的讨论。 但是我没有花太多时间在清理或构建代码上。 您可能会注意到,每种算法可能都有几种实现方式,在此我特意展示所有这些方式,供您参考和比较。 此外,此存储库仅包含PyTorch实施。 对于RL算法的官方库,
1
在动态图像文件行为的分布式图像可视化中,使用GAN模拟恶意软件作者以提供主动保护 引用为: VS Bhaskara, and D. Bhattacharyya. arXiv preprint arXiv:1807.07525 [stat.ML] (2018) 。 引用代码 训练的WGAN-GP模型基于上发布的代码。 我们将带有improved_wgan_training/gan_64x64.py脚本与GoodGenerator和GoodDiscriminator函数定义的网络体系结构GoodDiscriminator使用。 每个通道使用的64位dHash基于上的实现。 在color_dHash192.py脚本中显示了通过在彩色图像的通道上串联dHash来哈希的扩展。 数据集 dataset_filedetails.csv :列出文件SHA256哈希值和所使用的12,006个不同可执行文
2023-03-09 20:35:43 4.94MB security machine-learning deep-learning Python
1
sklearn-cookbook-zh:[翻译] Scikit-learn秘籍
2023-03-08 17:30:47 1.53MB python machine-learning book scikit-learn
1
Big5-性格React烧瓶 这是一个项目,我们可以在该项目上构建一个React应用并调用端点进行预测。 使用的模型是随机森林回归器和随机森林分类器。 使用myPersonality项目( )的数据集对模型进行训练。 模型使用回归模型生成预测的人格得分,并使用分类模型针对每个人格特征生成二元类别的概率。 技术领域 后端烧瓶 前端React 修改后的准备 Create-react-app创建一个基本的React应用程序。 接下来,加载了引导程序,该引导程序使我们可以为每个屏幕尺寸创建响应式网站。 在App.js文件中,添加了带有textarea和Predict按钮的表单。 将每个表单属性添加到状态,并在按下Predict按钮时,将数据发送到Flask后端。 将样式添加到页面的App.css文件。 Flask应用程序具有POST终结点/预测。 它接受输入值作为json,将其转换为数组,并使
2023-03-08 15:34:48 116.93MB deep-learning reactjs word word-embeddings
1
道路分割 客观的 在自动驾驶的情况下,给定前摄像头视图,汽车需要知道道路在哪里。 在这个项目中,我们训练了神经网络,通过使用一种称为完全卷积网络(FCN)的方法来标记图像中道路的像素。 在此项目中,使用KITTI数据集实施FCN-VGG16并对其进行了培训,以进行道路分割。 演示版 (单击以查看完整的视频) 1代码和文件 1.1我的项目包括以下文件和文件夹 是演示的主要代码 包含单元测试 包含一些帮助程序功能 是带有GPU和Python3.5的环境文件 文件夹包含KITTI道路数据,VGG模型和源图像。 文件夹用于保存训练后的模型 文件夹包含测试数据的细分示例 1.2依赖关系和我的环境 Miniconda用于管理我的。 Python3.5,tensorflow-gpu,CUDA8,Numpy,SciPy 操作系统:Ubuntu 16.04 CPU:Intel:registered:Core:trade_mark:i7-68
1
deep learning with pytorch英问书籍,入门pytorch必备书籍。。
2023-03-06 22:35:12 7.29MB deep learnin
1
Pytorch 官方书籍英文版配套代码
2023-03-06 22:16:53 169.37MB pytorch 代码 书籍
1