keras-unet-collection 所述tensorflow.keras实施U型网,V-净,U-净++,R2U网,注意力U形网,ResUnet-A,U ^ 2-Net和UNET 3+具有可选ImageNet训练有素骨架。 keras_unet_collection.models包含使用超参数选项配置keras模型的函数。 U-net,U-net ++,Attention U-net和UNET 3+支持预训练的ImageNet主干。 U-net ++,UNET 3+和U ^ 2-Net支持深度监督。 有关其他选项和用例,请参见《 》。 keras_unet_collection.models 名称 参考 unet_2d 网络 vnet_2d V-net(为2-d输入修改) unet_plus_2d U网++ r2_unet_2d R2U网 att
2021-08-24 15:24:11 257KB tensorflow pypi backbone imagenet
1
CNN_LSTM加注意力机制对股票预测,文件有数据
2021-08-24 11:03:45 325KB CNN_LSTM
对联AI 用PyTorch实现的自动对对联系统,支持多种模型。一般而言,给定一句话生成另一句话是序列生成问题,本项目根据上下联字数不同的特点将其转化为序列标注问题,即用下联去标注上联。 依存关系 python 3.6+ pytorch 1.2+ 烧瓶(可选) 数据集 数据集包含70多万条对联数据(26MB),下载请,或者(提取码:wude)。 用法 将下载到的数据集解压到当前目录(解压后的文件夹名称为couplet ) 运行preprocess.py进行数据预 运行main.py [-m model type]进行训练 运行clidemo.py <-p model path>可在控制台进行AI对对联 运行webdemo.py 可在Web端进行AI对对联 命令行参数的详细说明见文件内,你也可以在module/model.py中定义你自己的模型。 使用Docker
2021-08-23 10:46:23 33KB 系统开源
1
Attention:注意力机制在Keras当中的实现 目录 所需环境 tensorflow-gpu==1.13.1 keras==2.1.5 LSTM中的注意力机制 在本库中,我将注意力机制施加在LSTM的Step上,目的是注意输入进来的样本,每一个Step的重要程度。我们使用的样本数据如下: X = [[-21.03816538 1.4249185 ] [ 3.76040424 -12.83660875] [ 1. 1. ] [-10.17242648 5.37333323] [ 2.97058584 -9.31965078] [ 3.69295417 8.47650258] [ -6.91492102 11.00583167] [ -0.03511656 -
2021-08-20 16:05:05 5KB Python
1
[实战]200类鸟类细粒度分类识别 我又来了!!!! 一、图像分类 这次进行实战项目,鸟类细粒度分类识别实战。再讲细粒度分类之前,让我们先回顾一下图像分类吧。 图像分类是计算机视觉的最基础的一个任务,从最开始的入门级的mnist手写数字识别、猫狗图像二分类到后来的imagenet任务。图像分类模型随着数据集的增长,一步步提升到了今天的水平。计算机的图像分类水准已经超过了人类。 在这里我把图像分类任务分为了两种,一种是单标签的图像分类任务,一种是多标签的图像分类任务。 多标签的图像分类任务,更加符合人们的认知习惯。因为现实生活中的图片往往会包含多个类别物体。 而在单标签的图像分类任务中又可以
2021-08-20 11:21:32 1.16MB attention history 分类
1
基于Convolutional Block Attention Module (CBAM)的Multi-Attention模型设计与实现。模型本质上是并行添加了 CBAM 和 DeepMoji 注意力机制,并在最后将它们的特征进行合并。
Attention Is All You Need,NLP经典论文,值得仔细阅读
2021-08-18 12:09:57 2.13MB Attention NLP
1
DANet Attention资源包括论文原文和源代码
1
自注意力机制Self Attention——Pytorch源代码
2021-08-17 13:23:55 4KB pytorch attention 深度学习 图像处理
1
A2Attention——Pytoch源代码
2021-08-17 13:23:54 2KB attention pytorch 深度学习 图像处理
1