SDF-1α诱导的NSCs趋化性迁移受其分化状态影响,陈叶冰,张焕相,目的:探讨神经干细胞(NSCs)对趋化因子SDF-1α的定向迁移能力与其分化状态之间的关系。方法:本实验运用Boyden chamber及Dunn chamber趋化性迁
2025-12-30 20:42:04 692KB 首发论文
1
基于51单片机的五层电梯智能控制系统:多层楼按键控制、数码显示与报警功能全实现,基于51单片机的五层电梯智能控制系统:多层楼按键控制、数码显示与报警功能实现及Proteus仿真源码分享,51单片机五层电梯控制器 基于51单片机的五层电梯控制系统 包括源代码和proteus仿真 系统硬件由51单片机最小系统、蜂鸣器电路、指示灯电路、内部按键电路、外部按键电路、直流电机、内部显示电路、外部显示电路组成。 功能: 1:外部五层楼各楼层分别有上下按键,按下后步进电机控制电梯去该楼层,每层楼都有一位数码管显示电梯当前楼层; 2:电梯内部由数码管显示当前楼层,可按键选择楼层号来控制电梯; 3:电梯内部有报警按键,按下后蜂鸣器响; 4:电梯内部可按键紧急制动,此时电梯停止运行,电梯内部其他按键以及外部五层楼的上下按键将无法控制电梯。 ,核心关键词: 51单片机;五层电梯控制器;控制系统;源代码;Proteus仿真; 五层楼按键;步进电机;数码管显示;电梯当前楼层;蜂鸣器报警;紧急制动。,基于51单片机的五层电梯控制系统:功能齐全、仿真验证的源代码与硬件设计
2025-12-30 20:41:15 1.26MB rpc
1
本文研究了含非均匀孔板的热循环试验箱内流场的流动结构与温度分布,采用数值模拟与实验相结合的方式进行研究。研究的主要内容包括: 1. 研究对象:热循环试验箱内的混合对流现象。 2. 研究方法:使用数值模拟方法,结合实验验证。 3. 孔板模型:采用多孔介质模型简化非均匀孔板,便于模拟。 4. 数值模拟中的近似方法:采用Boussinesq近似和低雷诺数模型。 5. 模拟结果:揭示了强迫对流和自然对流对流体流动和传热的共同贡献。 6. 实验设备:采用恒温风速仪进行实验测量,并验证了模拟结果的准确性。 7. 关键参数:研究了不同孔板布置对温度均匀性的影响。 8. 热循环过程:详细描述了热循环试验箱中的典型温度变化阶段,包括冷却至低温、在低温下维持一段时间、加热至高温、在高温下维持以及回到环境温度。 具体知识点包括: - 混合对流(Mixed Convection):在自然对流和强迫对流同时存在的条件下发生的传热现象。在热循环试验箱中,由于温度梯度的存在和内部流动的强制,混合对流成为影响流场和温度分布的重要因素。 - 热循环试验箱(Thermal Cycling Chamber):一种模拟极端环境条件的设备,广泛应用于航天器、半导体和精密仪器等的性能和可靠性评估。其主要功能是产生可能对测试样品造成的极端环境,以在测试过程中发现设计和制造缺陷。 - 多孔介质模型(Porous Medium Model):在数值模拟中用于简化处理孔板等多孔结构的方法。通过压力损失类比来设置多孔区域,从而能够有效模拟流体在多孔介质中的流动。 - Boussinesq近似(Boussinesq Approximation):在对流换热问题的数值模拟中常用来简化浮力项的处理方法。该近似假设流体的密度只在重力项中因温度而变化,其他项中的密度则视为常数。 - 低雷诺数模型(Low-Reynolds Number Model):用于处理层流和低速湍流流动的模型。在热循环试验箱中的流动分析中,该模型有助于精确描述流体在近壁区的流动和传热特性。 - 温度均匀性(Temperature Uniformity):热循环试验箱中的一个重要参数,指箱内温度分布的均匀程度。温度均匀性对测试结果的准确性和可靠性具有重要影响。 - 恒温风速仪(Constant Temperature Anemometry):实验测量中使用的一种仪器,能够提供稳定的温度和测量风速。在本文的研究中,它被用来获取热循环试验箱内的温度分布数据,并与数值模拟结果进行对比。 通过这项研究,研究人员旨在提高热循环试验箱内的温度均匀性,减少测试过程中的温度波动,进而提升测试质量和效率。通过对非均匀孔板的布局进行优化,可以更好地控制箱内的流场和温度分布,从而使得试验箱内的热环境更加稳定,满足更严格测试的需求。
2025-12-30 20:06:57 661KB 首发论文
1
基于给定文件的信息,以下是详细的知识点: 1. 多支路回流型均热板概念:多支路回流型均热板(Multi-artery Vapor Chamber)是一种新型的热交换组件,利用相变原理高效地传导热量。该技术对于需要有效散热的应用场景具有重要意义,尤其在电子芯片散热领域。 2. 均热板结构:均热板通常包括一个容器、吸液芯结构和一个真空室。工作流体注入容器中,通过相变进行热传导。 3. 吸液芯结构:本文介绍的均热板使用烧结铜粉层作为蒸发端和冷凝端的吸液芯。烧结铜粉层能够有效地控制工作流体的流动,增强热交换效率。 4. 工作流体路径:均热板内嵌有烧结铜粉环和固体铜柱构成的液体流道,铜粉环直接与蒸发器和冷凝器的吸液芯接触,提供工作流体的快速回流路径。 5. 结构稳定性:为了防止由于内外压力差异引起的均热板变形,固体铜柱与上下板焊接在一起。 6. 性能测试:研究构建了一个包括焦耳加热和水冷却的实验系统,通过定义热阻来表征均热板性能。测试分析了不同热负载、加热面积和加热模式下的均热板性能。 7. 低热阻和高热流密度极限:研究结果显示,使用1平方厘米热源测量得到的最低热阻小于0.08 K∙cm2/W,而最大测试热流密度达到300W/cm2,且尚未达到毛细管或沸腾极限。 8. 相比现有技术的优势:与文献中报道的均热板相比,本研究中的均热板具有更低的热阻和更高的热流密度极限。 9. 关键词:论文中的关键词包括“均热板”、“热管”、“多支路”和“热阻”,这些关键词突出了文章的研究重点。 10. 电子芯片散热挑战:随着电子芯片热耗散的增加,散热问题越来越具有挑战性。因此,需要具有优秀散热能力的组件,而基于相变原理工作的均热板是解决这个问题的有效手段。 通过上述知识点,我们可以了解到多支路回流型均热板的设计原理、结构特点以及测试评估性能的方式,这些知识对于从事热管理技术研究和开发的专业人士具有指导意义。同时,该技术的创新点和性能优势也表明了它在高性能散热领域中的应用潜力。
2025-12-30 19:48:23 502KB 首发论文
1
基于变区间遗传算法的SF6灭弧室结构优化设计,刘晓明,闻福岳,提出变区间遗传算法(VIGA),并以550kV单断口SF6断路器灭弧室为研究对象,进行了触头结构优化设计,以实现灭弧室内的匀场设计,得到触�
2025-12-30 19:30:52 660KB 首发论文
1
本文详细介绍了如何在2025年9月基于NVIDIA GeForce RTX 5060 Ti显卡创建CUDA 12.8和PyTorch 2.8的开发环境。首先通过conda创建Python 3.10环境,然后使用pip安装PyTorch 2.8.0及CUDA 12.8版本。文章指出conda安装会报错,因为pytorch-cuda=12.8尚未在Anaconda官方渠道发布,只能通过pip wheel方式安装。最后验证了安装成功,并解释了为什么其他版本不兼容的原因:5060 Ti显卡的Compute Capability为sm_120,而当前安装的PyTorch版本不支持该架构。 在2025年9月,本文详细记录了基于NVIDIA GeForce RTX 5060 Ti显卡构建CUDA 12.8以及PyTorch 2.8开发环境的过程。文章首先建议使用conda工具创建一个Python 3.10的运行环境,从而为后续的CUDA和PyTorch安装做好准备。尽管在使用conda安装过程中会遇到一些问题,即官方尚未发布pytorch-cuda=12.8版本,导致安装失败,但作者建议采用pip安装方式作为替代方案。通过pip wheel的方法可以成功地安装PyTorch 2.8.0以及与之匹配的CUDA 12.8版本。 在描述安装过程时,作者特别强调了CUDA版本与特定显卡架构之间的兼容性问题。以NVIDIA GeForce RTX 5060 Ti显卡为例,它的Compute Capability为sm_120,而PyTorch的某些版本可能不支持此架构。因此,正确的版本选择是确保开发环境稳定运行的关键。文章在结尾部分也对这一点进行了验证和解释,确保读者能够理解不同版本软件与硬件之间的匹配关系。 通过本文,读者可以了解到如何在特定硬件配置下搭建一个高效且稳定的深度学习开发环境。同时,通过conda和pip的灵活应用,即便面对官方未完全支持的新硬件,也能够成功部署所需的软件环境。 文章中还可能包含了一些有关如何测试安装成功的信息。比如,可以通过运行一些简单的PyTorch代码来检查GPU是否可以被正确识别和使用,或者查看系统日志确认CUDA和PyTorch的组件是否被正确加载和运行。这样的测试步骤对于确认环境搭建的正确性至关重要,尤其是在进行深度学习研究或开发工作前的准备阶段。 此外,虽然本文主要集中在创建一个特定版本的CUDA和PyTorch环境,但其实所使用的工具和方法,比如conda和pip,都是通用的软件包管理工具,对于其他软件的安装同样适用。因此,即使读者不打算使用CUDA或PyTorch,本文的技术内容依然有其参考价值。 值得注意的是,文章可能还提到了硬件限制对于软件版本选择的重要性。不同的CUDA和PyTorch版本有其特定的硬件要求,这可能与新硬件的发布不同步。因此,在安装过程中,开发者需要仔细了解各种版本的支持情况,选择最适合当前硬件配置的软件版本。 本文还可能提供了其他一些有用的资源链接和参考文献,比如相关的官方文档、论坛讨论或者教程视频。这些资源可以帮助读者更全面地理解安装过程中可能遇到的问题及其解决方案,也为有进一步学习需求的读者提供了深入学习的途径。
2025-12-30 18:03:58 7KB 软件开发 源码
1
本文提供了一套Python笔试题及其详细答案,涵盖了选择题、解答题和编程题三大类。选择题部分包括Python基础语法、数据类型、内存管理、字符串操作、字典、列表、元组、函数、类与对象、异常处理等知识点。解答题部分探讨了列表与元组的区别、函数定义规则、__new__与__init__的区别、文件读取方法等。编程题则涉及成绩等级划分、字符统计和数字排序等实际应用场景。这些题目和答案对于准备Python相关面试或测试的读者具有较高的参考价值。 本文档是一套包含详细答案的Python笔试题库,题型包括选择题、解答题和编程题,全面覆盖了Python的基础知识点。在选择题部分,涉及到Python的基础语法,例如缩进规则、变量命名;数据类型,包括整型、浮点型、布尔型、NoneType等;内存管理,涉及变量的引用与删除;字符串操作,比如格式化和常用函数;以及集合类型,如字典、列表、元组的特点和操作。此外,还涵盖了函数定义和使用、类与对象的创建和使用、异常处理方法等内容。 解答题部分则更加深入地探讨了Python中的高级知识点,例如列表和元组之间的区别,它们在内存中的表现形式和使用场景;函数的定义规则,包括参数传递和作用域;__new__和__init__两个特殊方法在类的实例化过程中的不同作用;以及文件的读取方法,理解文件读写的模式和异常处理。这些解答题的深度讨论,有助于读者更透彻地理解Python语言。 编程题部分则将理论知识应用于实践,提供了实际编程任务,例如实现成绩等级划分的逻辑,统计一段文本中各字符的出现频率,以及对一组数字进行排序处理等。这些问题的解答不仅需要扎实的Python编程基础,也需要一定的逻辑思维能力和编程技巧。 此外,本题库不仅适用于希望提高Python编程技能的学习者,更对那些准备参加Python相关面试或测试的读者具有很高的参考价值。通过这些题目和答案的练习,读者可以对自己的Python知识进行查漏补缺,提高解题的速度和准确性。 由于文档是一套完整的Python笔试题库,题目的设计覆盖了从基础到高级的不同层次,因此适合不同水平的读者使用。无论是初学者还是有经验的开发者,都可以从这些题目中找到适合自己的练习素材。文档不仅提供了题目的答案,更针对每个问题给出了详细的解释和分析,使得读者不仅能够知其然,更能知其所以然。 更重要的是,通过完成这些笔试题,读者可以加深对Python语言的理解,提升编程技能,为解决实际问题打下坚实的基础。同时,这些笔试题在面试中往往能够考察应聘者的编程逻辑和问题解决能力,因此对于求职者而言,这些题目的练习能够帮助他们在面试中脱颖而出。而对有经验的开发者来说,这些题目则是一个检验自身水平和巩固知识的良好机会。 此外,文档的题目设计注重理论与实践相结合,编程题往往要求读者完成一个具体的编程任务,这种实践导向的学习方式有助于提高读者的编程实战能力。通过这些练习题,读者可以将理论知识应用到实际问题解决中,提高编程的综合应用能力。 由于Python语言的广泛适用性,这套题库不仅适用于软件开发领域,也可以作为其他相关专业人员的技术考核参考资料。Python的简洁性和易用性使其成为许多公司和组织在招聘过程中考察候选人技术能力的首选语言。 本文档为读者提供了一套内容全面、难度适中的Python笔试题库,涵盖基础理论知识和实际编程技能的检验,不仅适合初学者巩固学习成果,也为经验丰富的开发者提供了一次知识的回顾和梳理的机会。通过本题库的系统训练,读者可以全面提高自己的Python编程能力,为面试、考试或日常开发工作做好充分准备。
2025-12-30 17:38:44 6KB 软件开发 源码
1
本文介绍了如何通过临时补丁方案让PyTorch支持NVIDIA RTX 5080(Blackwell架构,sm_120)。由于官方尚未支持该架构,编译时会出现错误或忽略显卡架构。补丁仓库pytorch-rtx5080-support的作用包括:为PyTorch编译系统添加Blackwell架构别名,允许通过TORCH_CUDA_ARCH_LIST编译sm_120,并确保在CUDA 12.8和PyTorch 2.5.0+环境下正常使用。操作步骤包括下载源代码、应用补丁、编译PyTorch以及验证是否成功。此外,还提供了Windows上的运行方法,包括使用CMD或Git Bash等工具。 PyTorch是一款广泛使用的深度学习框架,以其动态计算图和高效的GPU加速能力受到开发者的青睐。随着技术的发展,NVIDIA不断推出新的GPU架构来提升深度学习训练和推理的性能。RTX系列显卡,搭载了名为Blackwell的架构,代表了NVIDIA在高性能计算领域的最新成果。然而,软件框架的更新往往滞后于硬件的发布,这意味着新硬件在刚推出时可能不会被所有软件立即支持。 在这篇文档中,作者介绍了为PyTorch框架添加对NVIDIA RTX 5080显卡支持的方法。RTX 5080显卡采用的Blackwell架构,代号为sm_120,而在PyTorch的官方版本中,该架构尚未得到支持。由于缺乏原生支持,开发者在尝试编译PyTorch时可能会遇到错误,或者编译器会忽略该显卡架构,导致无法充分利用硬件潜力。 文档中提到的补丁仓库名为“pytorch-rtx5080-support”,它为PyTorch编译系统提供了必要的架构别名支持,使得开发者可以通过设置TORCH_CUDA_ARCH_LIST来包括sm_120架构。补丁的应用对于在CUDA 12.8和PyTorch 2.5.0及以上版本的环境中运行至关重要。这个临时的补丁方案提供了一种快速跟进硬件发展的途径,直到官方支持被正式添加到PyTorch的下一个版本中。 在文档的操作步骤部分,作者详细说明了实现RTX 5080支持的整个过程。需要下载补丁仓库的源代码;接下来,按照提供的指导应用补丁;然后,执行编译PyTorch的命令;通过一系列验证步骤确认补丁是否成功应用,以及是否能够在RTX 5080显卡上正常运行PyTorch。 除了在通用的操作系统环境下,文档还特别指出了Windows系统上的运行方法。在Windows上,可以使用CMD或Git Bash等命令行工具来执行相关的编译和运行命令。这些说明为Windows平台的开发者提供了便利,确保了操作过程的清晰和可重复性。 值得注意的是,补丁方案作为一种临时解决方案,适用于那些迫不及待需要使用新硬件的开发者。然而,开发者在使用非官方补丁时,应该注意可能存在的稳定性和安全性问题。建议在生产环境中使用时进行充分的测试,并关注官方PyTorch项目未来发布的版本,以便在官方支持稳定且安全的新架构时,能够及时更新。 这篇文档为开发者提供了一个实用的解决方案,以在官方支持到来之前,让PyTorch能够与最新的GPU硬件协同工作,从而充分发挥硬件的计算潜力。文档的内容详尽,步骤清晰,大大降低了操作的复杂性,并为各类用户提供了包括Windows在内的多种操作系统环境下的操作指导。
2025-12-30 17:36:43 8KB 软件开发 源码
1
本文详细介绍了PCF8563时钟/日历芯片的功能特性、接口通信方式及技术规格,并提供了完整的STM32驱动代码。PCF8563是一款工业级多功能芯片,支持实时时钟、日历、报警、定时器等功能,通过I2C总线与外部设备通信。文章包含芯片的主要功能、应用场景、注意事项以及详细的源码解析,代码经过STM32F103VETX和STM32L431VETX验证,可直接用于项目开发。 PCF8563是一款常用于嵌入式系统中的实时时钟/日历芯片,具备多功能性,包括时钟、日历、报警、定时器等,是工业应用的理想选择。该芯片通过I2C总线与外部设备进行通信,因此与STM32这类微控制器有着非常好的兼容性和交互性能。 在实际应用中,PCF8563需要编写相应的驱动程序以便微控制器能够高效地利用其功能。驱动程序主要负责初始化芯片、设置时间日期、读取时间日期、设置报警器、定时器等。在编写代码时,开发者需要遵循I2C通信协议,掌握寄存器地址和配置方法,以便于正确地发送指令和接收数据。 本文为开发者提供了完整的STM32驱动代码,这些代码经过了在不同型号的STM32微控制器上的测试,包括STM32F103VETX和STM32L431VETX。这些代码不仅包含了初始化流程,还对时钟、日历、报警和定时器等主要功能提供了详细的实现。开发者可以直接参考这些代码进行项目开发,或根据具体项目需求对代码进行修改和优化。 在使用PCF8563和相关驱动代码时,还需要了解芯片的应用场景和注意事项。比如在低功耗设计中,定时器和报警功能可以帮助系统在不需要持续监控时进入低功耗模式。在设置这些功能时,开发者应充分考虑硬件的电源管理策略,以提高系统的整体效率。 文章中还包含了对源码的详细解析,确保开发者能够理解每个函数、变量和代码段的作用。这样的深入解析不仅有助于驱动代码的复用,也有利于在遇到问题时进行调试和维护。 本文提供的资料对于希望在项目中集成实时时钟/日历功能的开发者来说非常有价值。它不仅包括了硬件层面的介绍和软件层面的实现,还提供了实际的代码示例和详细的代码解析,能够帮助开发者迅速上手并投入到项目开发中去。
2025-12-30 14:26:06 20KB 软件开发 源码
1
Ophir Vega是以色列OPHIR公司生产的一款手持式红外紫外线波长光谱功率计,具有多功能通用型表头设计,可兼容多种探头使用。该设备配备TFT 320 x 240像素彩色显示屏,支持高分辨率模拟指针显示,能够展示彩色条形图、能量、平均、曝光、频率、功率等多种数据。内置USB和RS232接口,支持与计算机通讯,并具备可充电镍氢电池或AC电源供电选项。设备数据存储容量高达250000个数据点,可设置10个文件档,用户可编程调整功率、能量、响应时间和零点设置。自动识别探头并消除本底值,兼容热电堆、光电、热释电等多种探头类型。串口通信协议简单,常用指令包括波长、量程、滤片和查询能量等。 Ophir Vega激光功率计是来自以色列OPHIR公司的高科技产品,具有手持式的设计,功能强大而多样。它能够覆盖红外和紫外线波长,拥有广泛的光谱功率计应用。设备的表头设计非常通用,能够兼容多种探头,用户可以根据实际需要进行更换和匹配,极大地提高了使用灵活性。 这款功率计的显示屏采用了高分辨率TFT彩色显示屏,分辨率高达320 x 240像素,能够提供清晰的视觉体验。用户不仅可以查看各种数据,还能以彩色条形图的形式直观地看到能量、平均值、曝光、频率和功率等信息。为了方便用户记录和分析数据,Ophir Vega还内置了USB和RS232接口,允许用户将数据传输到计算机上,进行进一步的处理和分析。此外,用户可以选择使用可充电的镍氢电池或直接使用AC电源供电,这样的设计既方便又环保。 数据存储方面,Ophir Vega提供了高达250000个数据点的存储容量,且用户可自由设置10个文件档,根据不同的测试需要进行数据管理。功率计还允许用户进行编程,调整功率、能量、响应时间和零点设置,满足更专业的需求。在用户操作方面,Ophir Vega可以自动识别探头类型,并自动消除本底值,这大大简化了测量流程,并提高了测量的准确性。该设备兼容热电堆、光电、热释电等多种类型的探头,满足了不同应用场景的需求。 串口通信是Ophir Vega的另一大亮点,它具有简单的通信协议,并提供常用指令,例如波长、量程、滤片和查询能量等,这些指令方便用户通过串口与设备进行有效沟通。通过简单的操作,用户可以快速地从设备中获取需要的测量数据。 Ophir Vega激光功率计以其多功能性和高精度测量,为科研、工业和医疗领域提供了一个非常有效的工具,极大地提高了工作效率和测量精准度。这款设备不仅仅是一款简单的功率计,更是一个全面的数据获取和分析平台,为专业人士提供了极大的便利。
2025-12-30 11:47:33 3KB 软件开发 源码
1