40kHZ超声波收发电路,HZ超声波发射电路之五,由LM555时基电路及外围元件构成40kHZ多谐振荡器电路,调节电阻器RP阻值,可以改变振荡频率。由LM555第3脚输出端驱动超声波换能器T40-16,使之发射出超声波信号。
2024-03-29 13:07:07 194KB
1
调频无线话筒的制作及电路 1、电路原理 2、元器件选择 3、安装制作 4、电路的调试
2024-03-28 20:27:37 483KB 无线话筒
1
电容测量计概述: 该电容测量计采用ATmega48/DIP28单片机作为主控制芯片,LM78L05/T92作为5 V 固定正电压稳压器,LED 4-DIGIT 0.5"作为电容测量值显示。电路设计简单,适合DIY制作。附件内容包括整个电容测量计电路设计,固件(HEX文件)、元器件清单以及设计说明等。 电容测量计实物展示: 电容测量计参数如下: 大约1%的准确率。不需要校准。 测量范围:1 pf - 500μf 自动选择测量范围 归零法可用 实时读取串行输出的测量值 电容测量计电路截图:
1
电子电路软件训练报告——电路仿真与印刷电路板(PCB)的设计 电路仿真与印刷电路板(PCB)的设计 电子电路软件训练报告 电路仿真 AD的基本操作流程 原理图绘制的原理,弄清楚原理图中每个元件代表的意义和使用这种元件的原因,掌握PCB元件封装时元件尺寸,元件形状等元件属性和如何利用元件的属性进行绘制,学会理论和实际相结合的方法,理解PCB在电子系统的至关重要的作用。 三是培养了学生的动手操作能力,解决实际问题和独立思考的能力,加强学生对电子专业的理解,更加深度地培养了学生将理论和实际联系在一起的能力,更是一个学生查漏补缺的机会,学会如何将书本上的内容使用到实际操作中。
2024-03-27 14:42:34 770KB
1
本设计是基于GD25Q128耳机音频电路板PCB/源码设计,并支持4路音频输出。该GD25Q128耳机音频电路板开发板主要功能是将音频存在Flash中,通过I2S/DAC播放音频。另外为增加娱乐性还设计了4路音频输出,其中两路为CS4344,两路为芯片自带DAC,即I2S两通道,DAC两通道。电路CPU使用的是GD32F105RCT6,但是跟这个片pin-pin兼容的起码有四五款,这里不详叙。CS4344是个低成本的I2S接口DAC,直接驱动耳机.效果对本人来讲觉得很不错了。GD25Q128耳机音频电路板实物截图: GD25Q128耳机音频电路板电路 PCB截图: GD25Q128耳机音频电路板PCB/源码等资料截图:
2024-03-27 10:54:12 11.24MB cs4344 电路方案
1
循环(7,3)码编码电路设计(基于quartus的代码及仿真)
2024-03-25 18:12:57 81KB quartus 通信原理
1
简要说明: 一、 尺寸:32mm X22mm X27mm 长X宽X高 二、 主要芯片:LM393、ZYMQ-8气体传感器 三、 工作电压:直流5伏 四、 特点: 1、具有信号输出指示。 2、双路信号输出(模拟量输出及TTL电平输出) 3、TTL输出有效信号为低电平。(当输出低电平时信号灯亮,可直接接单片机) 4、模拟量输出0~5V电压,浓度越高电压越高。 5、对氢气有较好的灵敏度。 6、具有长期的使用寿命和可靠的稳定性 7、快速的响应恢复特性 五、应用: 适用于家庭或工业上对氢气泄露的监测装置。可不受乙醇蒸汽,油烟、一氧化碳等气体的干扰。
2024-03-25 10:20:42 767KB 电路方案
1
电路中,在储能元器件两端并联一只电阻器给储能元件提供一个小号能量的通路,使电路安全。这个电阻就叫泄放电阻(注:储能元件如电容器,电感器,工作与开关状态的MOS管等),下面介绍5种泄放电阻电路,一起来学习一下吧!     1.泄放电阻基本电路 泄放电阻电路基本形态是一只电容器两端并联一直阻值比较大的电阻器,电路中的电阻R1就是泄放电阻(如下图)。     当电路通电后正常工作时,泄放电阻基本上不起作用,它只在电路断电后的很短时间起快速泄放电容C1残留电荷的作用,这就是泄放电阻的工作特点。     2.电容降压电路中泄放电阻电路
2024-03-25 10:09:54 82KB
1
本文提出采用两级环形总线网络拓扑、主从通信方式的消防指示灯智能监控系统。设计了用电池提供应急电源的通信网关的总体结构。采用单片机自带的双串口构成两个独立光电隔离的RS-485 接口作为下级环形总线主站,实现与智能应急标志灯之间交换数据。利用单片机的SPI 接口功能和另一个单片机扩展第三个独立的光电隔离RS-485 接口,作为上级环形总线网络的从站, 实现与监控主机之间状态和命令信息交换。
2024-03-23 13:24:47 109KB 智能监控 RS485
1
高温或内部功耗产生的过多热量可能改变电子元件的特性并导致其关机、在指定工作范围外工作,甚或出现故障。电源管理器件(及其相关电路)经常会遇到这些问题,因为输入与负载之间的任何功耗都会导致器件发热,所以必须将热量从这些器件中驱散出来,使其进入PCB、附近的元器件或周围的空气。即使在传统高效的开关电源中,当设计PCB和选择外部元器件时,也都必须考虑散热问题。
2024-03-23 09:27:24 123KB 电源管理 MOSFET 课设毕设
1