灌溉 问题定义 需要提高生产率,以便农民在不破坏土壤的情况下从同一片土地上获得更多的报酬。 印度农民无法根据其土壤需求来选择合适的农作物,具体取决于氮,磷,钾,温度,湿度,降雨量,pH值等因素。 农民通常不了解根据土壤要求使用的有机肥料或标准肥料。 由于施肥不足和不平衡,土壤发生了退化,这导致了养分的开采以及养分管理中第二代问题的发展。 根据印度工商联合会的一项研究,害虫每年造成的农作物损失达卢比。 500亿。 客观的 实施精确农业(一种现代农业技术,该技术使用土壤特征,土壤类型,作物产量数据的研究数据,并根据其特定地点的参数向农民建议正确的作物,以减少对作物的错误选择并提高生产率) 。 为了解决该问题,通过采用具有多数投票技术的集成模型为现场特定参数提出了一种推荐系统,具有较高的准确性和效率。 根据氮,磷,钾值和作物推荐肥料。 根据ISO标准识别有害生物并推荐印度可使用的特
2022-11-11 10:30:16 2KB css html flask machine-learning
1
2048健身房 该存储库是一个有关使用DQN(Q-Learning)玩2048游戏并使用加速和加速环境的。使用的算法来自“ ,环境是自定义的 env。该环境包含两种类型的电路板表示形式:二进制和无二进制。第一个使用幂二矩阵来表示电路板的每个图块。相反,没有二进制文件使用原始矩阵板。 该模型使用两种不同类型的神经网络:CNN(卷积神经网络),MLP(多层感知器)。使用CNN作为特征提取器比使用MLP更好。可能是因为CNN可以提取空间特征。结果,代理在1000个已玩游戏的10%中获得2048个图块。 奥图纳 Optuna是一个自动超参数优化软件框架,专门为机器学习而设计。它具有命令式,按运行定义样式的用户API。多亏了我们的运行定义API,用Optuna编写的代码具有高度的模块化,并且Optuna的用户可以动态构造超参数的搜索空间。 还有就是如何使用这个库指南。 Numba 是一种开源JI
1
模糊和清晰的图像分类 分类模糊和清晰的图像 介绍 在日常生活中,由于聚焦不佳,帧中物体的运动或在捕获图像时的握手运动,我们会遇到从相机单击的不良图像。 Blur is typically the thing which **suppress the high-frequency** of our Images, therefore can be detected by using various low-pass filter eg. Laplacian Filter. 作为一个聪明的人(我自己是CS人士),我们不想手动过滤掉清晰和模糊的图像,因此我们需要一些聪明的方法来删除不必要的图像。 LoG筛选器 我还应用了高斯( )滤波器的拉普拉斯算子来检测模糊图像,但是很难找到区分图像所需的阈值的确切值。 尽管结果并不令人着迷。 使用方差 一些讨论 LoG参考: 在Python中实现
1
高中位数 您是否知道没有数学方法将的概念扩展到更高维度的独特方法? 高维中位数存在各种定义,并且此Python软件包提供了这些定义的许多快速实现。 中值因其高的击穿点(高达50%的污染)而非常有用,并且在机器学习,计算机视觉和高维统计中有许多不错的应用。 该软件包当前具有和实现,并支持使用NaN丢失数据。 安装 软件包的最新版本始终在可用,因此可以通过键入以下命令轻松安装: pip3 install hdmedians 类固醇 给定一个有限集 的 维观测向量 ,类 这些观察结果由 medoid的当前实现是在矢量化Python中实现的,可以处理支持的任何数据类型。 如果您希望算法处理编码为nan的缺失值,则可以使用nanmedoid函数。 例子 创建一个6 x 10的随机整数观测值数组。 >>> import numpy as np >>> X = np.random.randin
1
保险行业语料库 大家称为 看了下您的项目,我觉得这份数据可以用于保险领域的中文问答研究,对于某些问题的翻译很准确,长度扩展的答案翻译就有些不连贯的问题,大体上关键字信息和-华东师范大学 优秀作品! - ,中国东部师范大学 绝对 基线模型 最小批量大小= 100,hidden_​​layers = [100,50],lr = 0.0001。 纪元25,总步数36400,精度0.9031,成本1.056221。 滴水 Python3 + pip install -r Requirements.txt 跑 一个非常简单的网络作为基准模型。 python3 deep_qa_1/network
1
AI可解释性360(v0.2.1) AI Explainability 360工具箱是一个开放源代码库,支持数据集和机器学习模型的可解释性和可解释性。 AI Explainability 360 Python软件包包括一套全面的算法,这些算法涵盖了解释的不同维度以及代理的可解释性指标。 通过逐步介绍不同消费者角色的示例用例,对概念和功能进行了简要介绍。 提供了更深入的,面向数据科学家的介绍。 完整的API也可用。 没有一种最能解释问题的方法。 有很多解释方法:数据与模型,直接可解释与事后解释,本地与全局解释等,因此弄清楚哪种算法最适合给定用例可能会造成混淆。 为了帮助您,我们创建了一些和
1
机器学习工具箱 主程序可以对数据应用几种监督分类方法: Logistic回归(线性模型) 支持向量机 装袋 随机森林 神经网络 可以使用其他一些工具,例如Boosting,K均值,线性回归。 该程序使用不同的外部工具箱: Prtools套袋和随机森林 用于神经网络的DeepLearnToolbox-master 适用于SVM的libsvm-3.20 此外,一些代码来自Andrew Ng的Coursera MOOC:。
2022-11-04 17:00:36 2.25MB MATLAB
1
在复习《机器学习》时,个人总结的一点复习资料。后续如果还总结的话,也考虑传一下。
2022-11-02 19:00:37 1.03MB 机器学习 期末考试 MachineLearning 研究生
Jupyter模板 Jupyter笔记本的简单模板。 该扩展程序可以使用常规模板和通用模板设置任何新的Jupyter Notebook,以进行数据科学分析。 该模板包括常规部分,如数据导入,处理和参考,以及执行常见操作(如导入和配置图表库)的代码。 此外,每当您尝试保存一个名为“无标题”的笔记本时,它都会提示您输入有意义的名称。 觉得这个烦人吗? 不用担心,您可以禁用此功能。 动机 Jupyter笔记本是很棒的工具:它们可实现快速原型设计并简化结果共享。 但是,由于它们的灵活性,它们容易被滥用。 为了帮助数据科学家保持笔记本电脑的清洁,合理灵活但常规的模板可能会有所帮助。 此外,模板还是一种生产力工具,可加快常用设置(例如库导入和配置)的速度。 快速开始 我们假设您的环境中已经安装了Jupyter笔记本电脑。 但是,即使不是这种情况,也不必担心:jupytemplate将Jup
2022-10-31 23:23:28 6.28MB template data-science machine-learning jupyter
1
sklearn-matlab:使用scikit-learn语法在Matlab中进行机器学习
1