本资源通过整理目前GAN的相关论文做出PPT,PPT配套演讲文档,和附上PPT所述的来源引文
2021-05-18 13:27:19 17.96MB 生成式 对抗网络
1
使用Pix2Pix GAN将Google Satelite Image转换为Streetmap图像 Pix2Pix GAN是图像到图像转换的通用方法。 它基于条件生成对抗网络,其中生成目标图像,该目标图像以给定输入图像为条件。 提出了Pix2Pix GAN的思想。 根据该论文,该模型不仅学习从源图像到目标图像的映射,而且学习损失函数以训练该映射。 网络架构 生成器是经过修改的U-net模型,它将RGB图像作为输入,然后尝试将其映射到相同形状的另一个RGB图像。 鉴别器是一个PatchGan,输出一个30x30的矩阵,然后用于计算对抗损失。 数据集 可以使用此从Kaggle下载数据集。 下载数据集后,将其提取到data / dataset文件夹中。 超参数 source_images = 1096 target_images = 1096 IMAGE_HEIGHT = 256 IMAGE_W
2021-05-11 17:29:52 5.14MB computer-vision deep-learning tensorflow gan
1
该资源中,论文中英文版本资源都有,Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network 这篇文章的中文翻译 中文名:使用生成对抗网络的逼真的单图像超分辨率 通过谷歌翻译百度翻译等多种翻译单句单句翻译的,格式和公式已经矫正过了,没有乱码。GAN的经典文章,学习生成对抗网络的著名论文,优质翻译你值得拥有,谁用谁知道!
2021-05-10 23:24:33 15.74MB GAN 翻译 生成对抗网络 photo-realistic
1
生成式对抗网络(GAN,generative adversarial network)对生成式模型的发展具有深远意义,自提出后立刻受到人工智能学术界和工业界的广泛研究与高度关注,随着深度学习的技术发展,生成式对抗模型在理论和应用上得到不断推进。首先,阐述生成对抗模型的研究背景与意义,然后,详细论述生成式对抗网络在建模、架构、训练和性能评估方面的研究进展及其具体应用现状,最后,进行分析与总结,指出生成式对抗网络研究中亟待解决的问题以及未来的研究方向。
1
基于LSTM生成对抗网络的多类别MIDI音乐生成
2021-05-08 17:05:41 782KB 研究论文
1
DeblurGAN DeblurGAN:使用条件对抗网络进行盲运动去模糊的Pytorch实现。 我们的网络将模糊的图像作为输入,并进行相应的清晰估计,如示例所示: 我们使用的模型是条件性Wasserstein GAN,具有基于VGG-19激活的渐变惩罚+感知损失。 这样的体系结构在其他图像到图像的转换问题(超分辨率,着色,修复,除雾等)上也给出了良好的结果。 怎么跑 先决条件 NVIDIA GPU + CUDA CuDNN(CPU未经测试,感谢反馈) 火炬 从下载权重。 请注意,在推论过程中,您仅需保持Generator权重。 放入砝码 /.checkpoints/experimen
2021-05-06 19:42:00 34.29MB computer-vision deep-learning neural-network paper
1
目前大多数的图像风格迁移方法属于有监督学习,训练数据需要成对出现,并且在处理图像背景时,现有的方法过于繁琐。针对这些问题,提出了一种基于图像蒙板的无监督图像风格迁移方法。在实验中,采用了基于循环一致性的CycleGAN架构,并使用Inception-ResNet结构设计了一个全新的具有内置图像蒙板的生成式模型,最后通过无监督学习将图像的背景与学习到的抽象特征进行自动重组。实验表明,新方法有效地对图像背景和抽象特征进行自动分离与重组,同时解决了特征学习过程中的区域干扰问题,获得了可观的视觉效果。
1