DeblurGAN:使用生成对抗网络进行图像去模糊-源码

上传者: 42160645 | 上传时间: 2021-05-06 19:42:00 | 文件大小: 34.29MB | 文件类型: ZIP
DeblurGAN DeblurGAN:使用条件对抗网络进行盲运动去模糊的Pytorch实现。 我们的网络将模糊的图像作为输入,并进行相应的清晰估计,如示例所示: 我们使用的模型是条件性Wasserstein GAN,具有基于VGG-19激活的渐变惩罚+感知损失。 这样的体系结构在其他图像到图像的转换问题(超分辨率,着色,修复,除雾等)上也给出了良好的结果。 怎么跑 先决条件 NVIDIA GPU + CUDA CuDNN(CPU未经测试,感谢反馈) 火炬 从下载权重。 请注意,在推论过程中,您仅需保持Generator权重。 放入砝码 /.checkpoints/experimen

文件下载

资源详情

[{"title":"( 54 个子文件 34.29MB ) DeblurGAN:使用生成对抗网络进行图像去模糊-源码","children":[{"title":"DeblurGAN-master","children":[{"title":"train.py <span style='color:#111;'> 2.41KB </span>","children":null,"spread":false},{"title":"checkpoints","children":[{"title":"experiment_name","children":[{"title":"opt.txt <span style='color:#111;'> 967B </span>","children":null,"spread":false},{"title":"web","children":[{"title":"index.html <span style='color:#111;'> 33.70KB </span>","children":null,"spread":false}],"spread":true},{"title":"latest_net_D.pth <span style='color:#111;'> 10.56MB </span>","children":null,"spread":false},{"title":"latest_net_G.pth <span style='color:#111;'> 23.18MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"motion_blur","children":[{"title":"generate_trajectory.py <span style='color:#111;'> 5.24KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"generate_PSF.py <span style='color:#111;'> 3.97KB </span>","children":null,"spread":false},{"title":"blur_image.py <span style='color:#111;'> 5.39KB </span>","children":null,"spread":false}],"spread":true},{"title":"models","children":[{"title":"test_model.py <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 342B </span>","children":null,"spread":false},{"title":"conditional_gan_model.py <span style='color:#111;'> 4.49KB </span>","children":null,"spread":false},{"title":"losses.py <span style='color:#111;'> 5.85KB </span>","children":null,"spread":false},{"title":"base_model.py <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false},{"title":"networks.py <span style='color:#111;'> 16.73KB </span>","children":null,"spread":false}],"spread":true},{"title":"test.py <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"images","children":[{"title":"yolo_b.jpg <span style='color:#111;'> 69.55KB </span>","children":null,"spread":false},{"title":"animation1.gif <span style='color:#111;'> 815.45KB </span>","children":null,"spread":false},{"title":"animation4.gif <span style='color:#111;'> 326.43KB </span>","children":null,"spread":false},{"title":"yolo_o.jpg <span style='color:#111;'> 95.25KB </span>","children":null,"spread":false},{"title":"test1_sharp.jpg <span style='color:#111;'> 117.70KB </span>","children":null,"spread":false},{"title":"test1_restored.jpg <span style='color:#111;'> 110.49KB </span>","children":null,"spread":false},{"title":"yolo_s.jpg <span style='color:#111;'> 104.95KB </span>","children":null,"spread":false},{"title":"results.png <span style='color:#111;'> 56.61KB </span>","children":null,"spread":false},{"title":"test1_blur.jpg <span style='color:#111;'> 88.25KB </span>","children":null,"spread":false},{"title":"animation2.gif <span style='color:#111;'> 935.97KB </span>","children":null,"spread":false},{"title":"animation3.gif <span style='color:#111;'> 292.48KB </span>","children":null,"spread":false}],"spread":false},{"title":"datasets","children":[{"title":"helper functions","children":[{"title":"grayscale.py <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false}],"spread":true},{"title":"combine_A_and_B.py <span style='color:#111;'> 2.09KB </span>","children":null,"spread":false}],"spread":true},{"title":"util","children":[{"title":"get_data.py <span style='color:#111;'> 3.43KB </span>","children":null,"spread":false},{"title":"util.py <span style='color:#111;'> 2.10KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"html.py <span style='color:#111;'> 1.87KB </span>","children":null,"spread":false},{"title":"image_pool.py <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"visualizer.py <span style='color:#111;'> 5.98KB </span>","children":null,"spread":false},{"title":"png.py <span style='color:#111;'> 978B </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 3.48KB </span>","children":null,"spread":false},{"title":"options","children":[{"title":"train_options.py <span style='color:#111;'> 2.39KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"base_options.py <span style='color:#111;'> 5.03KB </span>","children":null,"spread":false},{"title":"test_options.py <span style='color:#111;'> 847B </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 2.52KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"single_dataset.py <span style='color:#111;'> 815B </span>","children":null,"spread":false},{"title":"aligned_dataset.py <span style='color:#111;'> 1.87KB </span>","children":null,"spread":false},{"title":"unaligned_dataset.py <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"base_dataset.py <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"custom_dataset_data_loader.py <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false},{"title":"data_loader.py <span style='color:#111;'> 234B </span>","children":null,"spread":false},{"title":"base_data_loader.py <span style='color:#111;'> 195B </span>","children":null,"spread":false},{"title":"image_folder.py <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 43B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明