包含各种信号处理代码,配合王济这本书使用。 Pick: Along with the social economydevelopment and thescience and technology level enhancement, the family electric applianceentire automation becomes the inevitable development tendency. Entireautomatic washer production enormous conveniencepeople's life. Thewasher is the domestic electrical appliances industry does not onlywhich the price fights, passes through several year steady developmentthe domestically produced washer regardless of in quality or in functionall with 《MATLAB在振动信号处理中的应用》 MATLAB(矩阵实验室)是一款强大的数学计算软件,广泛应用于科研和工程领域,特别是在信号处理方面有着显著的优势。本文将探讨MATLAB如何用于振动信号的处理,包括趋势项消除和五点滑动平均法平滑处理这两种常见技术。 1. **最小二乘法消除多项式趋势项** 在振动信号分析中,往往需要去除信号中的趋势项以提取出周期性或随机性成分。程序4-1展示了如何利用MATLAB的最小二乘法(Least Squares Method)来消除多项式趋势。用户通过键盘输入数据文件名,然后读取文件中的采样频率、拟合多项式阶数以及输出数据文件名。接着,程序读取时程数据并计算趋势项的多项式待定系数向量`a`。通过`polyfit`函数,MATLAB能拟合数据并找到最佳多项式。然后,用`polyval`函数计算趋势项,并从原始信号中减去这一趋势,得到去趋势后的信号`y`。程序将结果输出到新的数据文件中,同时绘制原始信号和去趋势后的信号曲线以供观察。 2. **五点滑动平均法平滑处理** 平滑处理是减少噪声和提高信号清晰度的一种常用方法。程序4-2演示了如何使用五点滑动平均法对振动信号进行平滑。同样,用户输入数据文件名,读取采样频率和平滑次数,然后读取输入数据。在循环中,MATLAB依次计算每个数据点的五点滑动平均值,更新信号。这种方法通过相邻点的加权平均来降低高频噪声的影响。处理后的新信号赋值给`y`,并绘制原始与平滑后的信号曲线。这个过程可以重复多次,以达到更显著的平滑效果。 在振动信号处理中,MATLAB的强大功能和灵活性使得数据预处理、特征提取以及模态识别等任务变得简单。通过结合王济等相关教材,读者可以深入学习和掌握MATLAB在振动分析中的应用,进一步提升在机械健康监测、故障诊断等领域的工作能力。
2024-08-23 11:22:19 2.31MB matlab 信号处理 模态识别
1
自己创建的MATLAB程序。 作用:基于经典的无迹卡尔曼滤波(不敏卡尔曼滤波、无味卡尔曼滤波,都是UKF)改进的自适应UKF,根据观测的误差自适应调节观测误差,以达到提高滤波精度的作用。 亮点:只有一个m文件,方便运行,给出了与经典UKF的结果对比。
2024-08-23 10:18:01 7KB matlab
1
分享箭头绘制arrow3-arrow.m 一个能在平面和空间绘制箭头的函数。空间箭头为圆锥头。功能比较强大,对于色彩支持很好,压缩包内有html格式文件具体介绍。 该函数是matlab官方网站FileExchange上的最新版本。 功能介绍(word版) arrow3.doc 函数下载 arrow3.zip 下面还有一个arrow函数,也是绘制箭头的,但是样子比上面一个好看,而且自定义的箭头形式比较多。与上面一个相比,唯一不足的是,空间箭头不是圆锥头,箭头内的颜色只能是纯色,不能过渡。 arrow.png 函数 arrow.m ———————————— 希望对大家有用~ 补充内容 : arrow3函数从2013年开始就停止更新了,但arrow函数还在更新,可以到 http://cn.mathworks.com/matlabce ... ow/?s_tid=ILM2FXsub 下载最新版。
2024-08-22 16:20:19 55KB matlab
1
MATLAB是一种广泛应用于科学计算、数据分析以及工程领域的高级编程环境,尤其在物理模拟和仿真方面具有强大能力。在本主题“matlab_PIC-MCC等离子体仿真”中,我们将探讨如何利用MATLAB进行粒子-in-cell(PIC)蒙特卡洛碰撞(MCC)方法的等离子体仿真。 等离子体是物质的第四种状态,由正负电荷粒子组成,如电子、离子和原子核。在天体物理学、核聚变、半导体制造等领域都有广泛应用。在等离子体研究中,由于其复杂的动力学行为,通常需要通过数值模拟来理解和预测其行为。PIC-MCC方法就是一种常用的数值模拟技术。 1. **粒子-in-cell(PIC)方法**: - PIC方法是将等离子体中的大量粒子群体划分为小的网格单元,每个单元代表一定数量的粒子。这些粒子的运动和相互作用通过迭代过程进行计算。 - 在MATLAB中,可以使用矩阵运算和并行计算功能实现高效的大规模粒子追踪,模拟等离子体的行为。 2. **蒙特卡洛碰撞(MCC)**: - 蒙特卡洛方法是一种统计模拟技术,用于模拟随机事件。在等离子体仿真中,MCC用于处理粒子间的碰撞过程。 - 在MATLAB中,可以编写程序来随机选择粒子对进行碰撞计算,考虑库仑散射、辐射损失等物理效应,从而得到更真实的仿真结果。 3. **MATLAB编程技巧**: - 数据结构:使用MATLAB的数组和矩阵结构存储粒子信息,如位置、速度、电荷和质量。 - 时间推进:采用四阶Runge-Kutta或其他数值积分方法更新粒子状态。 - 并行计算:利用MATLAB的Parfor循环进行并行计算,加速大规模粒子系统的模拟。 4. **可视化工具**: - MATLAB内置强大的图形用户界面(GUI)和数据可视化工具,能够实时显示等离子体的电场、磁场、密度分布等物理量,帮助研究人员直观理解仿真结果。 5. **优化与性能**: - 为了提高仿真的效率和准确性,需要优化代码,减少不必要的计算和内存开销。 - 使用MATLAB的编译器或者接口连接其他高性能计算库(如CUDA或OpenMP)可以进一步提升性能。 在“PIC-MCC等离子体仿真”这个项目中,你可能需要分析提供的文件,了解仿真模型的构建、参数设置、结果解析等方面的内容。通过深入学习和实践,你可以掌握使用MATLAB进行等离子体仿真的核心技能,并将其应用到实际科研问题中。
2024-08-22 16:20:10 965KB matlab 开发语言
1
本实验以小型固定翼无人机 Aerosonde 为对象,通过动力学分析,建立了固定翼飞机非线性动力学模型,并利用 matlab/simulink 对所建模型进行了仿真。本实验选择的控制方法为 PID 控制,其物理意义明确,适用范围广。利用matlab/simulink 对设计的飞行控制系统进行仿真,可以看出,在 PID 控制下,飞机能有较好的飞行效果。
2024-08-22 10:47:40 1.07MB matlab
1
给出了二维FFT的详细仿真,雷达测速测距的注解
2024-08-21 16:47:42 4KB matlab
1
在本文中,我们将深入探讨无人机群协同作战搜索的原理与实现,主要基于提供的"无人机群协同作战搜索源码"。这个源码集成了蚁群算法,用于优化搜索策略,并使用MATLAB进行设计。MATLAB是一种强大的数值计算和编程环境,非常适合进行这样的复杂系统模拟。 一、无人机群协同作战基础 无人机群协同作战是现代军事和科研领域中的一个重要研究方向,它利用多架无人机的协作来完成单一无人机无法完成的任务。通过通信和自主决策,无人机可以共同执行搜索、监视、目标定位等多种任务,提高任务效率和生存能力。 二、蚁群算法 蚁群算法(Ant Colony Optimization, ACO)是一种启发式全局优化算法,源自自然界中蚂蚁寻找食物路径的行为。在这个源码中,蚁群算法被用来模拟无人机的搜索路径规划。每个无人机被视为一个“蚂蚁”,通过信息素(模拟蚂蚁留下的化学痕迹)在搜索空间中寻找最佳路径。信息素的更新机制结合了探索性和exploitation性,使得无人机能够动态调整搜索策略,以高效地覆盖搜索区域。 三、MATLAB软件应用 MATLAB是数学计算、数据分析和算法开发的理想工具。在这个项目中,MATLAB被用来实现无人机群的建模、仿真以及轨迹记录。MATLAB提供了丰富的库函数和可视化工具,使得开发者能够快速构建和测试无人机协同作战模型,同时可以实时动态地展示飞行轨迹,以便于理解和优化算法性能。 四、代码结构分析 源码包"Code"可能包含了以下组成部分: 1. 数据结构:定义无人机、搜索区域和信息素等数据结构。 2. 蚁群算法实现:包含初始化、路径选择、信息素更新等核心函数。 3. 无人机行为模型:定义无人机的运动模型、感知范围和决策规则。 4. 模拟环境:创建搜索区域,设定初始条件。 5. 主程序:控制整个搜索过程,调用上述模块并记录结果。 6. 可视化模块:绘制无人机飞行轨迹和搜索进度。 五、学习与应用 这个源码对于理解无人机群协同作战和蚁群算法的实际应用具有很高的价值。通过学习和调试源码,可以深入了解无人机的协同策略和路径规划算法。同时,这也为其他类似问题(如机器人路径规划、网络路由优化等)提供了一种可能的解决方案框架。 总结,无人机群协同作战搜索源码结合了MATLAB的强大功能和蚁群算法的优化特性,为我们提供了一个直观且可扩展的研究平台。通过深入研究和实践,我们可以进一步提升无人机搜索任务的效率和效果。
2024-08-21 10:03:08 62KB matlab
1
matlab/simulink 双馈风机调频,风电调频,风火水调频,虚拟惯性控制,下垂控制 参与系统一次调频的Matlab/Simulink模型 系统为三机九节点模型,所有参数已调好且可调,可直接运行,风电渗透率20% 也可研究风火联合,火电调频等。有同步机调速器。 风电调频,IEEE9节点,双馈风机调频,一次调频,火电调频,同步机调频。 同步机部分带有调速器等部分。并网电压电流。 风电附带下垂控制,虚拟惯性控制,风电渗透率20%,有参考文献。也可研究风电并网,并网电压,电流波形
2024-08-20 19:21:47 1.16MB matlab
1
永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)是一种高效的电动机类型,广泛应用于工业驱动、电动汽车和航空航天等领域。直接转矩控制(Direct Torque Control, DTC)是针对这种电机的一种先进控制策略,它以其快速动态响应和简单的硬件结构而受到青睐。在MATLAB/Simulink环境中,通过建模和仿真可以深入理解DTC的工作原理并优化其性能。 直接转矩控制的核心思想是直接对电机的电磁转矩和磁链进行控制,而不是通过控制电流来间接实现。这使得系统能够迅速调整转矩,从而在各种工况下提供稳定且高效的运行。在改进版的DTC中,通常会引入一些策略来优化控制性能,例如使用更精确的转矩和磁链估算,或者采用滞环控制器以提高系统稳定性。 MATLAB/Simulink是一种强大的系统级建模和仿真工具,适合于构建复杂的电气系统模型。在"永磁同步电机直接转矩控制改进版MATLAB/Simulink完整仿真模型"中,我们可以预期包含以下主要组件: 1. **PMSM模型**:这个模型描述了电机的电磁行为,包括永磁体、定子绕组和转子的物理特性,以及电机的电气方程。 2. **DTC模块**:这部分包含了转矩和磁链的计算、滞环控制器以及开关状态的选择逻辑。滞环控制器通过比较实际值与设定值来决定开关状态,以保持转矩和磁链在期望范围内。 3. **传感器模型**:在真实系统中,转矩和磁链的测量可能依赖于传感器。仿真模型中可能包括虚拟传感器,模拟这些信号的获取。 4. **控制器**:控制器负责根据DTC算法产生脉冲宽度调制(PWM)信号,控制逆变器的开关元件,进而改变电机的电磁转矩。 5. **系统反馈**:模型应包含反馈机制,如转速和电流的测量,用于闭环控制。 6. **仿真接口**:提供输入参数(如电机参数、负载条件)和设置(如仿真时间、步长),并显示输出结果(如转矩、磁链、速度、电流波形等)。 文件"PMSM_plot.m"可能是用于绘制和分析仿真结果的脚本,它可能包含了提取数据、绘制曲线以及分析性能的代码。 "PMSM_DTC_improved.slx"是Simulink模型文件,直接打开后可以查看和修改整个系统的结构。通过这个模型,用户可以研究不同的控制策略、优化参数,并对比改进前后的效果。 总结来说,这个MATLAB/Simulink模型提供了一个学习和研究PMSM DTC控制技术的平台,对于理解和改进这种控制策略具有很高的价值。通过深入分析和仿真,工程师们可以提升电机的效率和动态性能,以满足各种应用的需求。
1
智能微电网是一种集成可再生能源、储能系统以及传统能源的分布式发电系统,它具有自调度、自治和并网/离网切换的能力。在智能微电网的运行优化中,粒子群优化算法(PSO)是一种广泛应用的优化工具。PSO是由 Swarm Intelligence(群体智能)理论发展而来的一种全局优化算法,其灵感来源于鸟群寻找食物的行为。 PSO算法的基本思想是通过模拟鸟群中的个体(粒子)在搜索空间中的飞行和学习过程,寻找最优解。每个粒子代表一个可能的解决方案,并带有两个关键的速度和位置参数。粒子根据自身经验和全局最佳经验更新速度和位置,从而逐步逼近最优解。 在MATLAB中实现PSO优化算法,首先需要定义问题的目标函数,即需要优化的函数。对于智能微电网,可能的目标函数包括最小化运行成本、最大化可再生能源利用率或最小化对主电网的依赖等。然后,设定PSO算法的参数,如种群大小、迭代次数、惯性权重、认知学习因子和社会学习因子。 在MATLAB中,可以使用内置的`pso`函数来方便地实现PSO算法。该函数允许用户自定义目标函数、约束条件和算法参数。例如,你可以这样设置: ```matlab options = psoOptions('Display','iter','MaxIter',100,'PopulationSize',50); [x,fval] = pso(@objectiveFunction,xlimits,options); ``` 在这里,`objectiveFunction`是你定义的目标函数,`xlimits`是定义的变量范围,`options`包含了算法设置。 对于智能微电网的调度问题,优化变量可能包括各电源的出力、储能系统的充放电策略等。PSO算法会为这些变量找到最优值,从而实现智能微电网的高效运行。 在实际应用中,可能还需要考虑各种约束,如设备的功率限制、电池的充放电限制、电网的电压稳定性和频率约束等。这些约束可以通过惩罚函数或约束处理方法融入目标函数,确保优化结果的可行性。 文件列表中的“智能微电网PSO优化算法”可能包含以下内容:源代码文件(.m文件),其中定义了目标函数、优化参数、约束条件以及PSO算法的实现;数据文件(.mat或.csv),用于存储微电网的系统参数和运行数据;结果文件,包括最优解、性能指标和优化过程的可视化图表。 MATLAB中的PSO算法为解决智能微电网的优化问题提供了一种有效且灵活的方法。通过调整算法参数和优化目标,可以适应不同的运行场景和需求,实现微电网的智能化管理和优化运行。
2024-08-19 17:06:43 8KB matlab
1