DeepLabv3Plus-Pytorch DeepLabv3,DeepLabv3 +和VOC和Cityscapes上的预训练权重。 可用架构 使用“ --model ARCH_NAME”指定模型体系结构,并使用“ --output_stride OUTPUT_STRIDE”设置输出步幅。 DeepLabV3 DeepLabV3 + deeplabv3_resnet50 deeplabv3plus_resnet50 deeplabv3_resnet101 deeplabv3plus_resnet101 deeplabv3_mobilenet deeplabv3plus_mobilenet 可用型号: , 加载预训练的模型: model . load_state_dict ( torch . load ( CKPT_PATH )[ 'model_state' ] )
2021-09-19 14:59:17 2.11MB pytorch resnet pascal-voc cityscapes
1
该模型使用基于磁共振成像 (MRI) 的 ResNet-18 模型检测阿尔茨海默病 (AD)。 在该模型中,我们提出了一种在 3D CNN 中利用迁移学习的方法,该方法允许将知识从 2D 图像数据集 (ImageNet) 迁移到 3D 图像数据集。 为了构建 3D ResNet-18,2D ResNet-18 的 2D 过滤器在第三维中扩展为具有 3D 过滤器。 其余层根据新过滤器进行了调整。 然后,将整个 MRI 用于训练 3D ResNet-18,以对每个人做出一个决定。 我们的结果表明,将转移学习引入3D CNN可以提高AD检测系统的准确性。 这种方法在我们的 ADNI 数据集上实现了 96.88% 的准确度、100% 的灵敏度和 93.75% 的特异性。 此文件夹中目前有一些示例图像。 要访问更多图像,您需要将您的应用程序发送到 ADNI ( http://adni.loni
2021-09-17 12:35:57 118MB matlab
1
SE-Resnet注意力机制网络搭建,包含残差网络和全连接层,特征融合构建SE-resnet网络结构
2021-09-14 15:22:28 1KB SE注意力机制
1
使用3D ResNet进行视频分类 这是使用训练的3D ResNet进行视频(动作)分类的pytorch。 在Kinetics数据集上训练了3D ResNet,该数据集包括400个动作类。 此代码将视频用作输入,并在得分模式下输出每16帧的班级名称和预测班级得分。 在功能模式下,此代码每16帧输出512个暗角的功能(在全局平均池化之后)。 提供此代码的Torch(Lua)版本。 要求 conda install pytorch torchvision cuda80 -c soumith FFmpeg,FFprobe wget http://johnvansickle.com/ffmpeg/
2021-09-13 16:24:53 154KB python computer-vision deep-learning pytorch
1
matlab fig生成代码 CNNItemRec-MATLAB 使用修改后的VggNet和ResNet网络进行训练并进行分类评测 使用软件:MATLAB R2019b、PyCharm 2019.3.3 x64 其中binConvert文件夹为将二进制形式数据文件转化为图片形式的代码,因为已经下载好数据集,所以注释掉了代码中下载数据集的部分,如果未下载,可以取消掉这部分的注释进行数据集的下载。将下载好的stl10_binary文件夹粘贴进去,运行代码,会生成一个img文件夹,里面包含10个文件夹,分别为10个类,每个类中包含500张训练图片。 再删除生成的img文件夹 改变代码的34-38行: DATA_PATH = './stl10_binary/test_X.bin' LABEL_PATH = './stl10_binary/test_y.bin' 再次运行,会生成一个img文件夹,里面包含10个文件夹,分别为10个类,每个类中包含500张测试图片,手动将生成的测试集和训练集的各个文件夹改为类名字。 其中CNNItemTest为该项目,里面已经包括了处理好的数据集,不需要做数据集类
2021-09-11 16:39:36 222.78MB 系统开源
1
张量流-cnn-finetune 这个仓库是关于使用TensorFlow对一些著名的卷积神经网络进行微调的。 ConvNets: 要求: Python 2.7或3.x Tensorflow 1.x(已通过1.15.1测试) OpenCV2(用于数据扩充) 数据集文件 您需要设置两个数据集文件以进行训练和验证。 格式必须如下所示: /absolute/path/to/image1.jpg class_index /absolute/path/to/image2.jpg class_index ... class_index必须从0开始。 可以在和找到样本数据集文件。 不要忘了通过--num_classes运行时,标志finetune.py脚本。 亚历克斯网 进入alexnet文件夹 cd alexnet 微调 如果您以前没有下载过砝码,请下载。 ./download_we
1
介绍 一维(1D)信号/时间序列数据上的多个SOTA骨干深度神经网络(例如ResNet [1],ResNeXt [2],RegNet [3])的PyTorch实现。 如果您在工作中使用此代码,请引用我们的论文 @inproceedings{hong2020holmes, title={HOLMES: Health OnLine Model Ensemble Serving for Deep Learning Models in Intensive Care Units}, author={Hong, Shenda and Xu, Yanbo and Khare, Alind and Priambada, Satria and Maher, Kevin and Aljiffry, Alaa and Sun, Jimeng and Tumanov, Alexey}, bookt
1
深度学习TensorFlow2.0 前言 在这个项目中,我将使用谷歌TensorFlow2.0框架逐一重现经典的卷积神经网络:LeNet-5,AlexNet,VGG系列,GooLeNet,ResNet系列,DenseNet系列,以及现在比较流行的:RCNN系列,SSD ,YOLO系列等。 教程目录 图像分类任务1.手写数字识别FirstNet(已​​完成) 2.快速建造卷积网络FastNet(已​​完成) 3. LeNet-5(已完成) 4. AlexNet(已​​完成) 5. VGG系列(已完成) 6. GooLeNet(已​​完成) 7. ResNet系列(已完成) 8. DenseNet系列(已完成) 目标检测任务1. RCNN系列2. SSD 3. YOLO系列 项目环境 Python3 Python3.6和3.7 PyCharm2018和2019 Tensorflow2.0
2021-09-08 15:09:59 135KB Python
1
keras-inception-resnet-v2 使用Keras的Inception-ResNet v2模型(带有权重文件) 在python 3.6下使用tensorflow-gpu==1.15.3和Keras==2.2.5进行了测试(尽管存在很多弃用警告,因为此代码是在TF 1.15之前编写的)。 层和命名遵循TF-slim的实现: : 消息 该实现已合并到keras.applications模块中! 在GitHub上安装最新版本的Keras并使用以下命令导入: from keras . applications . inception_resnet_v2 import InceptionResNetV2 , preprocess_input 用法 基本上与keras.applications.InceptionV3模型相同。 from inception_resnet
2021-09-07 22:20:13 45KB machine-learning deep-learning keras Python
1
ResNet源码,然后基于resnet实现在cifar10下的实战测试,注释齐全,特别详细,都能看懂。
2021-09-07 21:18:45 3KB tensorflow resnet cifar10
1