DeepLearning-TensorFlow2:本专栏我将使用谷歌TensorFlow2.0框架逐一重现经典的卷积神经网络:LeNet,AlexNet,VGG系列,GooLeNet,ResNet系列,DenseNet系列,以及现在比较流行的:RCNN系列,SSD,YOLO系列等-源码

上传者: 42131541 | 上传时间: 2021-09-08 15:09:59 | 文件大小: 135KB | 文件类型: ZIP
深度学习TensorFlow2.0 前言 在这个项目中,我将使用谷歌TensorFlow2.0框架逐一重现经典的卷积神经网络:LeNet-5,AlexNet,VGG系列,GooLeNet,ResNet系列,DenseNet系列,以及现在比较流行的:RCNN系列,SSD ,YOLO系列等。 教程目录 图像分类任务1.手写数字识别FirstNet(已​​完成) 2.快速建造卷积网络FastNet(已​​完成) 3. LeNet-5(已完成) 4. AlexNet(已​​完成) 5. VGG系列(已完成) 6. GooLeNet(已​​完成) 7. ResNet系列(已完成) 8. DenseNet系列(已完成) 目标检测任务1. RCNN系列2. SSD 3. YOLO系列 项目环境 Python3 Python3.6和3.7 PyCharm2018和2019 Tensorflow2.0

文件下载

资源详情

[{"title":"( 35 个子文件 135KB ) DeepLearning-TensorFlow2:本专栏我将使用谷歌TensorFlow2.0框架逐一重现经典的卷积神经网络:LeNet,AlexNet,VGG系列,GooLeNet,ResNet系列,DenseNet系列,以及现在比较流行的:RCNN系列,SSD,YOLO系列等-源码","children":[{"title":"DeepLearning-TensorFlow2-master","children":[{"title":"4. AlexNet","children":[{"title":"AlexNet.py <span style='color:#111;'> 7.76KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 142B </span>","children":null,"spread":false}],"spread":true},{"title":"DeepLearning-TensorFlow2.0.zip <span style='color:#111;'> 49.67KB </span>","children":null,"spread":false},{"title":"2. 快速搭建MNIST分类器","children":[{"title":"README.md <span style='color:#111;'> 155B </span>","children":null,"spread":false},{"title":"FastNet.py <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false}],"spread":true},{"title":"3. LeNet-5","children":[{"title":"LeNet-5.py <span style='color:#111;'> 2.93KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 142B </span>","children":null,"spread":false}],"spread":true},{"title":"6. GoogLeNet","children":[{"title":"class_indices.json <span style='color:#111;'> 108B </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 5.23KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"daisy_test.jpg <span style='color:#111;'> 31.45KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 4.64KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 144B </span>","children":null,"spread":false}],"spread":true},{"title":"ResNet-101","children":[{"title":"read_ckpt.py <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"class_indices.json <span style='color:#111;'> 108B </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 6.29KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 6.06KB </span>","children":null,"spread":false},{"title":"rose_test.jpg <span style='color:#111;'> 18.22KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false}],"spread":true},{"title":"DenseNet","children":[{"title":"train.py <span style='color:#111;'> 918B </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 539B </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 6.85KB </span>","children":null,"spread":false}],"spread":true},{"title":"ResNet","children":[{"title":"resnet.py <span style='color:#111;'> 2.99KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 2.36KB </span>","children":null,"spread":false},{"title":"reader.md <span style='color:#111;'> 280B </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.10KB </span>","children":null,"spread":false},{"title":"1. 手写数字识别","children":[{"title":"FirstNet.py <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 275B </span>","children":null,"spread":false}],"spread":true},{"title":"5. VGG11","children":[{"title":"VGG11.py <span style='color:#111;'> 7.97KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 144B </span>","children":null,"spread":false}],"spread":true},{"title":"datasets","children":[{"title":"README.md <span style='color:#111;'> 608B </span>","children":null,"spread":false}],"spread":true},{"title":"7. ResNet","children":[{"title":"resnet.py <span style='color:#111;'> 2.99KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 2.36KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 141B </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明