稀疏字典学习图像去噪

上传者: 43287548 | 上传时间: 2021-02-25 20:52:13 | 文件大小: 2.44MB | 文件类型: RAR
通过稀疏字典学习的方法,将图像进行稀疏分解,再通过字典学习,获得新的稀疏矩阵,然后调节参数用于稀疏去噪。

文件下载

资源详情

[{"title":"( 17 个子文件 2.44MB ) 稀疏字典学习图像去噪","children":[{"title":"[4]-稀疏去噪","children":[{"title":"Glena.jpg <span style='color:#111;'> 215.80KB </span>","children":null,"spread":false},{"title":"lena.bmp <span style='color:#111;'> 257.05KB </span>","children":null,"spread":false},{"title":"ClearNoise.py <span style='color:#111;'> 11.64KB </span>","children":null,"spread":false},{"title":"ceshi2.jpg <span style='color:#111;'> 22.42KB </span>","children":null,"spread":false},{"title":"lenna256.jpg <span style='color:#111;'> 43.21KB </span>","children":null,"spread":false},{"title":"ImageProcessing.py <span style='color:#111;'> 2.08KB </span>","children":null,"spread":false},{"title":"new1.jpg <span style='color:#111;'> 29.69KB </span>","children":null,"spread":false},{"title":"tw.jpg <span style='color:#111;'> 58.87KB </span>","children":null,"spread":false},{"title":"ceshi1.jpg <span style='color:#111;'> 64.05KB </span>","children":null,"spread":false},{"title":"lena1.jpg <span style='color:#111;'> 26.08KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"ImageProcessing.cpython-37.pyc <span style='color:#111;'> 1.65KB </span>","children":null,"spread":false}],"spread":true},{"title":"1234.jpg <span style='color:#111;'> 26.08KB </span>","children":null,"spread":false},{"title":"new.jpg <span style='color:#111;'> 85.36KB </span>","children":null,"spread":false},{"title":"lenna1.png <span style='color:#111;'> 702.77KB </span>","children":null,"spread":false},{"title":"IMG_20190314_133117.jpg <span style='color:#111;'> 1.01MB </span>","children":null,"spread":false},{"title":"123.jpg <span style='color:#111;'> 64.41KB </span>","children":null,"spread":false},{"title":"tw1.jpg <span style='color:#111;'> 21.67KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明