人工神经网络(Artificial Neural Network,ANN)是对人类大脑系统特性的一种描述。简单地讲,它是一种数学模型,可以用电子线路来实现,用计算机程序来模拟,是人工智能的一种方法。神经网络通过对大量历史数据的计算来建立分类和预测模型。
2021-08-07 12:06:17 1.51MB 深度学习 神经网路
Fracking Sarcasm using Neural Network
2021-08-04 15:05:23 464KB 神经网络
神经网络python书,非常好的可以上手的入门介绍性书籍,英文非扫描高清文字版,其他资源有的50分,太黑了。
2021-08-03 21:36:06 7.86MB neural netwo python AI
1
社区缺乏标准化的基准和度量标准。这一缺陷非常严重,以至于很难对修剪技术进行比较,也很难确定这一领域在过去三十年中取得了多大的进步。为了解决这种情况,我们确定了当前实践中的问题,提出了具体的补救措施,并引入了ShrinkBench,这是一个开源框架,用于促进修剪方法的标准化评估。我们使用收缩台对各种修剪技术进行了比较,结果表明,它的综合评价可以防止在比较修剪方法时常见的缺陷。
2021-07-24 10:48:40 763KB NNP
1
神经网络与深度学习最好的入门书籍,比较适合初学者,但需要有一定的英文阅读能力
2021-07-18 23:19:50 9.23MB Neural Network deeplearning
1
Neural Network Design第二版英文原版
2021-07-16 13:51:11 11.27MB Neural Network Design
1
神经常微分方程的元解法 使用参数化求解器实现鲁棒的神经ODE。 大意 每个具有s级且为p阶的Runge-Kutta(RK)求解器均由一个系数表( Butcher tableau )定义。 对于s=p=2 , s=p=3和s=p=4 ,表中的所有系数都可以使用不超过两个变量的参数设置[1]。 通常,在神经ODE训练期间,使用具有固定Butcher表的RK解算器,并且仅训练右侧(RHS)功能。 我们建议使用RK解算器的整个参数族来提高神经ODE的鲁棒性。 要求 pytorch == 1.7 顶点== 0.1(用于训练) 例子 对于CIFAR-10和MNIST演示,请检查examples文件夹。 元求解器制度 在笔记本examples/cifar10/Evaluate model.ipynb我们展示了如何使用不同类型的Meta Solver机制(即: 单机版 解算器切换/平滑 求解器集成
2021-07-14 13:40:46 10.53MB neural-network parametrized solver pytorch
1
SampleNet:可微分的点云采样 由特拉维夫大学的Itai Lang,Asaf Manor和Shai Avidan创建。 介绍 这项工作基于我们的。请阅读它以获取更多信息。也欢迎您观看CVPR 2020的。 直接在点云上工作的任务越来越多。随着点云大小的增加,这些任务的计算需求也随之增加。一个可能的解决方案是首先对点云进行采样。经典采样方法(例如,最远点采样(FPS))不考虑下游任务。最近的一项工作表明,学习针对特定任务的采样可以显着改善结果。但是,提出的技术并未处理采样操作的不可微性,而是提供了一种解决方法。 我们为点云采样引入了一种新颖的微分松弛。我们的方法采用了一种软投影操作,该操作将采样点近似为主要输入云中的混合点。近似值由温度参数控制,并在温度变为零时收敛到常规采样。在训练过程中,我们使用投影损耗来鼓励温度下降,从而使每个采样点都靠近输入点之一。 这种近似方案可在各种应用(例
2021-07-08 23:36:11 1.12MB deep-learning neural-network point-cloud pytorch
1
Manning.Grokking.Deep.Reinforcement.Learning.无水印版pdf
2021-07-08 09:09:33 72.5MB computerscience artificial neural network
1
和声2 神经网络音乐生成 利用最先进的 NLP 模型来生成人类发声的音乐 该项目是由加州大学伯克利分校的 John Canny 教授主持的 CS282-设计和可视化神经网络课程的一部分。 目标 我们调查了以下研究问题:“我们如何构建一个模型来生成离散标记序列,这些标记不仅可以模拟短期模式,还可以模拟长期模式。” 我们将结合音乐生成进行这项研究——节奏和旋律是短期模式,形式和结构是我们将尝试建模的长期模式。 背景 关于人工音乐生成的挑战已经有广泛的研究。 最近的方法包括 LSTM 和双 STM 架构 [1],SeqGAN 架构,它训练生成对抗网络以通过策略梯度 [2] 或 GAN [3] 生成结构化序列。 然而,最新的进展来自 OpenAI,并利用了 NLP 深度学习模型的最新突破。 他们使用的是变压器的改进版本,称为音乐变压器。 该模型使用注意力机制:每个输出元素都连接到每个输入元素,并且它们之间的权重是动态计算的。 它没有明确地通过对音乐的理解进行编程,但它可以通过学习预测标记(以结合音高、音量和乐器信息的方式编码的音符)来发现和声、节奏和风格的模式。 MIDI 文件。 有关更多信息
2021-07-01 17:04:21 65.57MB 系统开源
1