RNN和Temporal-ConvNet进行活动识别 ,(等额缴纳) 论文代码: (在杂志上接受,2019年) 项目: 抽象的 在这项工作中,我们使用ResNet-101演示了一个强大的基线两流ConvNet。 我们使用此基线来彻底检查RNN和Temporal-ConvNets的使用,以提取时空信息。 基于我们的实验结果,然后我们提出并研究了两个不同的网络,以进一步整合时空信息:1)时域RNN和2)初始样式的Temporal-ConvNet。 我们的分析确定了每种方法的特定局限性,这些局限性可能构成未来工作的基础。 我们在UCF101和HMDB51数据集上的实验结果分别达到了94.1%和69.0%的最新性能,而无需大量的时间增强。 我们如何解决活动识别问题? 演示版 GIF展示了我们的TS-LSTM和“时间-开始”方法的前3个预测结果。 顶部的文本是基本事实,三个文本是每种方法的预
1
ppt《LSTM的前身今世》介绍了RNN的发展历程,该资源包含BRNN、GRU、Attention等经典论文,一共9篇,可以作为NLP的入门。
2022-11-13 11:52:46 8.38MB RNN LSTM
1
擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真。
2022-11-11 13:33:44 499KB matlab
1
使用 Matlab 和 GPU 的向量化长短期记忆 (LSTM)
2022-11-05 23:01:47 35.09MB matlab
1
MATLAB实现PCA-LSTM主成分降维结合长短期记忆神经网络多输入回归预测(完整源码和数据) 数据为多输入回归数据,输入12个特征,输出1个变量。 运行环境MATLAB2018b及以上。
MATLAB实现CNN-LSTM卷积长短期记忆神经网络多特征分类预测(完整源码和数据) 数据为多特征分类数据,输入15个特征,分四类,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2020b及以上。
TPA会选择相关变量加权利用卷积捕获可变的信号模式。 注意力加权对bilstm的隐含层加权求和。出自论文Temporal Pattern Attention for Multivariate Time Series Forecasting
2022-11-02 09:08:40 184KB TPA 注意力机制 lstm pytorch
1
对NSL-KDD数据进行分类 使用lstm神经网络
2022-10-31 21:28:34 12.68MB lstm分类 NSL-KDD NSL-KDDlstm方法 KDD
1
S-LSTM-PyTorch Sentence LSTM的PyTorch实现 论文代码:用于文本表示的句子状态LSTM。 作者的正式TF实现: : S-LSTM单元实施 S-LSTM实施 使用遮罩启用批处理 分类演示 序列标记演示
2022-10-31 21:04:52 2KB Python
1
粒子群算法详细介绍,包括原理、流程、公式和实现。
2022-10-29 21:12:31 519KB pso-lstm流程 pso流程
1