机器学习推荐路线,包括四个部分Prerequisites,Machine learning with Scikit-Learn,Neural Networks with TensorFlow,Utilities 作者后续还会更新,感兴趣可以自己继续寻找
2024-02-20 17:50:20 118KB 机器学习 学习路线
1
Microsoft 机器学习服务器安装文件。安装sql server2017,在安裝机器学习服务器时会出现如下问题,无法进行在线安装,需要先将四个地址对应的安装包进行下载
2024-02-19 18:12:21 154.06MB sql server2017 机器学习
1
使用scikit-learn掌握机器学习-第二版 这是发行的的代码库。 它包含从头到尾完成本书所必需的所有支持项目文件。 关于这本书 本书探讨了各种机器学习模型,包括k最近邻,逻辑回归,朴素贝叶斯,k均值,决策树和人工神经网络。 它讨论了数据预处理,超参数优化和集成方法。 您将建立对文档进行分类,识别图像,检测广告等的系统。 您将学习使用scikit-learn的API从分类变量,文本和图像中提取功能; 评估模型性能; 并就如何改善模型的性能形成直觉。 说明和导航 所有代码都组织在文件夹中。 每个文件夹均以数字开头,后跟应用程序名称。 例如,Chapter02。 该代码将如下所示: Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy U
2024-02-17 17:49:07 2.77MB JupyterNotebook
1
逻辑回归matlab代码预测PRNG 使用机器学习技术预测伪随机数生成器 要运行一个学习者的单个实例,请使用exampleKNN.m脚本(例如,运行KNN)。 要重新运行实验,请运行deployConfig.m。 我们总共实施了五名学习者: 随机抽样-按比例随机抽取训练集中标签的比例 随机森林-传统的随机森林算法,以固定深度生长自举树-预测由树预测的标签的模式 KNN(k最近邻)-从训练集中预测k最近邻标签的模式 朴素贝叶斯-假设给定标签的每个特征在条件上均独立于所有其他特征-通过在训练集中计数来学习概率,并根据未归一化的贝叶斯规则预测具有最高概率的标签 Logistic回归-传统的logistic回归分类器使用Barzilai Borwein方程对更新进行了梯度下降训练-预测每个输出最可能的标签 我们还实现或硬编码了几个伪随机数生成器(PRNG)。 除非另有说明,否则每一项我们都支持k = 2、3和5个标签的值。 Mercenne Twister-我们在Matlab内置的Mercenne Twister算法的默认实现中包装了一个函数。 线性同余生成器-我们已使用Borland C /
2024-02-16 11:00:22 359KB 系统开源
1
机器学习 numpy pandas 基础
2024-02-13 22:59:51 9.85MB numpy 机器学习 pandas
1
美国凯斯西储大学(CWRU)数据集:文件名称为数据集类型缩写,便于文件检索
2024-02-08 17:03:44 234.44MB 故障诊断 数据集 深度学习 机器学习
1
Python数据分析项目实践,包括数据读取、评估、清洗、分析、可视化机器学习相关内容等
2024-02-05 18:16:52 5.83MB python 数据分析 机器学习
1
包含机器学习的特征抽取、数据预处理、算法(k-近邻算法、朴素贝叶斯、决策树、随机森林、岭回归、逻辑回归、k-means)、模型评估
2024-02-02 09:26:13 2.59MB 机器学习
1
自己编写并优化的贝叶斯模型,用于神经网络、机器学习或者数据分析、数据挖掘等领域的数学模型。是数据分析、Python程序设计、数学建模等课程作业的不二帮手! 语言为Python,在Python3.6~3.8均可运行,需要安装numpy
2024-02-02 09:24:48 1KB 数据分析 python 神经网络 机器学习
1
机器学习实验1:朝阳医院2018年销售数据 数据集描述:该数据集包含了朝阳医院2018年的销售数据,包括日期、科室、医生、药品名称、销售量等信息。 数据集格式:Excel文件(.xlsx) 机器学习实验2:adult数据集 数据集描述:该数据集是UCI机器学习库中的"Adult"数据集,包含了48,842个样本,每个样本有15个特征和一个标签。该数据集用于解决二分类问题,即判断一个人是否年收入超过50K美元。 训练数据文件名:adult.txt 测试数据文件名:adult.test 机器学习实验3:自定义数据集 数据集描述:该数据集可以根据实际需求自行分配,可以包含任何类型的数据和标签。 数据集路径:./data 在实验3中,你可以根据具体任务的需求,选择合适的数据集进行训练和测试。例如,如果你的任务是图像分类,可以选择一个包含图像文件和对应标签的文件夹作为数据集;如果你的任务是文本分类,可以选择一个包含文本文件和对应标签的文件夹作为数据集。
2024-02-02 09:14:15 23.3MB 机器学习 数据集 pytorch anaconda
1